A novel heuristic fall-detection algorithm based on double thresholding, fuzzy logic, and wearable motion sensor data
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We present a novel heuristic fall-detection algorithm based on combining double thresholding of two simple features with fuzzy logic techniques. We extract the features from the acceleration and gyroscopic data recorded from a waist-worn motion sensor unit. We compare the proposed algorithm to 15 state-of-the-art heuristic fall-detection algorithms in terms of five performance metrics and runtime on a vast benchmarking fall data set that is publicly available. The data set comprises recordings from 2880 short experiments (1600 fall and 1280 non-fall trials) with 16 participants. The proposed algorithm exhibits superior average accuracy (98.45%), sensitivity (98.31%), and F-measure (98.59%) performance metrics with a runtime that allows real-time operation. Besides proposing a novel heuristic fall-detection algorithm, this work has comparative value in that it provides a fair comparison on the relative performances of a considerably large number of existing heuristic algorithms with the proposed one, based on the same data set. The results of this research are encouraging in the development of fall-detection systems that can function in the real world for reliable and rapid fall detection.