Lebesgue-radon-nikodym decompositions for operator valued completely positice maps
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We discuss the notion of Radon-Nikodym derivatives for operator valued completely positive maps on C*-algebras, first introduced by Arveson [1969], and the notion of absolute continuity for completely positive maps, previously introduced by Parthasarathy [1996]. We begin with the definition and basic properties of positive and complete positive maps and we study the Stinespring dilation theorem which plays an essential role in the theory of Radon-Nikodym derivatives for completely positive maps, based on Poulsen [2002]. Then, the Radon-Nikodym derivative definition and basic properties belonging to Arveson is recorded and finally, we study the Lebesgue type decompositions defined by Parthasarathy in the light of the article Gheondea and Kavruk [2009].