Volumetric plasmonic resonator architecture for thin-film solar cells
buir.contributor.author | Demir, Hilmi Volkan | |
buir.contributor.author | Okyay, Ali Kemal | |
buir.contributor.orcid | Demir, Hilmi Volkan|0000-0003-1793-112X | |
dc.citation.epage | 093117-3 | en_US |
dc.citation.issueNumber | 9 | en_US |
dc.citation.spage | 093117-1 | en_US |
dc.citation.volumeNumber | 98 | en_US |
dc.contributor.author | Sefunc, M.A. | en_US |
dc.contributor.author | Okyay, Ali Kemal | en_US |
dc.contributor.author | Demir, Hilmi Volkan | en_US |
dc.date.accessioned | 2016-02-08T09:54:20Z | |
dc.date.available | 2016-02-08T09:54:20Z | |
dc.date.issued | 2011-03-04 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Department of Physics | en_US |
dc.description.abstract | We propose and demonstrate a design concept of volumetric plasmonic resonators that relies on the idea of incorporating coupled layers of plasmonic structures embedded into a solar cell in enhanced optical absorption for surface-normal and off-axis angle configurations, beyond the enhancement limit of individual plasmonic layers. For a proof-of-concept demonstration in a thin-film organic solar cell that uses absorbing materials of copper phthalocyanine/perylene tetracarboxylic bisbenzimidazole, we couple two silver grating layers such that the field localization is further extended within the volume of active layers. Our computational results show a maximum optical absorption enhancement level of ∼67% under air mass 1.5 global illumination considering both polarizations. | en_US |
dc.identifier.doi | 10.1063/1.3560446 | en_US |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/11693/22017 | |
dc.language.iso | English | en_US |
dc.publisher | AIP Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.3560446 | en_US |
dc.source.title | Applied Physics Letters | en_US |
dc.subject | Absorbing materials | en_US |
dc.subject | Active layer | en_US |
dc.subject | Air mass | en_US |
dc.subject | Computational results | en_US |
dc.subject | Design concept | en_US |
dc.subject | Field localization | en_US |
dc.subject | Global illumination | en_US |
dc.subject | Grating layers | en_US |
dc.subject | Off-axis angles | en_US |
dc.subject | Optical absorption | en_US |
dc.subject | Organic solar cell | en_US |
dc.subject | Plasmonic | en_US |
dc.subject | Proof of concept | en_US |
dc.subject | Thin-film solar cells | en_US |
dc.subject | Absorption | en_US |
dc.subject | Light absorption | en_US |
dc.subject | Resonators | en_US |
dc.subject | Silver | en_US |
dc.subject | Solar cells | en_US |
dc.subject | Plasmons | en_US |
dc.title | Volumetric plasmonic resonator architecture for thin-film solar cells | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Volumetric plasmonic resonator architecture for thin-film solar cells.pdf
- Size:
- 831.3 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version