Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide

buir.contributor.authorOkyay, Ali Kemal
dc.citation.issueNumber1en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorTurgut, B. B.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorNayfeh, M.en_US
dc.contributor.authorNayfeh, A.en_US
dc.date.accessioned2016-02-08T10:43:39Z
dc.date.available2016-02-08T10:43:39Z
dc.date.issued2015en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at the same operating voltages, enhanced retention, and endurance characteristics. The measurements are further confirmed by plotting the energy band diagram of the structures, calculating the quantum tunneling probabilities, and analyzing the charge transport mechanism. Also, the required program time of the memory with ultra-thin asymmetric Al2O3/HfO2 tunnel oxide with graphene nanoplatelets storage layer is calculated under Fowler-Nordheim tunneling regime and found to be 4.1 ns making it the fastest fully programmed MOS memory due to the observed pure electrons storage in the graphene nanoplatelets. With Si nanoparticles, however, the program time is larger due to the mixed charge storage. The results confirm that band-engineering of both tunnel oxide and charge trapping layer is required to enhance the current non-volatile memory characteristics.en_US
dc.identifier.doi10.1186/s11671-015-0957-5en_US
dc.identifier.issn1931-7573
dc.identifier.urihttp://hdl.handle.net/11693/25369
dc.language.isoEnglishen_US
dc.publisherSpringer New York LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/s11671-015-0957-5en_US
dc.source.titleNanoscale Research Lettersen_US
dc.subjectAluminum oxideen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCharge trapping memory devicesen_US
dc.subjectGraphene nanoplateletsen_US
dc.subjectProgram timeen_US
dc.subjectRetention timeen_US
dc.subjectSilicon nanoparticlesen_US
dc.subjectAluminumen_US
dc.subjectAluminum coatingsen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCharge trappingen_US
dc.subjectData storage equipmenten_US
dc.subjectDigital storageen_US
dc.subjectFlash memoryen_US
dc.subjectGrapheneen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMetalsen_US
dc.subjectMOS devicesen_US
dc.subjectNanoparticlesen_US
dc.subjectNonvolatile storageen_US
dc.subjectQuantum chemistryen_US
dc.subjectSiliconen_US
dc.subjectAluminum oxidesen_US
dc.subjectCharge trapping memoryen_US
dc.subjectGraphene nanoplateletsen_US
dc.subjectProgram timeen_US
dc.subjectRetention timeen_US
dc.subjectSilicon nanoparticlesen_US
dc.subjectSemiconducting siliconen_US
dc.titleEnhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxideen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al inf 2.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Full printable version