Wireless sensing in complex electromagnetic media: construction materials and structural monitoring

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage5554en_US
dc.citation.issueNumber10en_US
dc.citation.spage5545en_US
dc.citation.volumeNumber15en_US
dc.contributor.authorÖzbey, B.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorKurc, O.en_US
dc.contributor.authorErtürk, V. B.en_US
dc.contributor.authorAltıntaş, A.en_US
dc.date.accessioned2016-02-08T09:37:29Z
dc.date.available2016-02-08T09:37:29Z
dc.date.issued2015en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn this paper, wireless sensing in the presence of complex electromagnetic media created by combinations of reinforcing bars and concrete is investigated. The wireless displacement sensing system, primarily designed for use in structural health monitoring (SHM), is composed of a comb-like nested split-ring resonator (NSRR) probe and a transceiver antenna. Although each complex medium scenario is predicted to have a detrimental effect on sensing in principle, it is demonstrated that the proposed sensor geometry is able to operate fairly well in all scenarios except one. In these scenarios that mimic real-life SHM, it is shown that this sensor exhibits a high displacement resolution of 1 μm, a good sensitivity of 7 MHz/mm in average, and a high dynamic range extending over 20 mm. For the most disruptive scenario of placing concrete immediately behind NSRR, a solution based on employing a separator behind the probe is proposed to overcome the handicaps introduced by the medium. In order to obtain a one-to-one mapping from the measured frequency shift to the displacement, a numerical fit is proposed and used. The effects of several complex medium scenarios on this fit are discussed. These results indicate that the proposed sensing scheme works well in real-life SHM applications. © 2001-2012 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:37:29Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1109/JSEN.2015.2441555en_US
dc.identifier.issn1530-437X
dc.identifier.urihttp://hdl.handle.net/11693/20892
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JSEN.2015.2441555en_US
dc.source.titleIEEE Sensors Journalen_US
dc.subjectComplex mediumen_US
dc.subjectConcreteen_US
dc.subjectDisplacement sensoren_US
dc.subjectNested split ring resonator (NSRR)en_US
dc.subjectReinforcing bar (rebar)en_US
dc.subjectStrain sensoren_US
dc.subjectStructural health monitoring (SHM)en_US
dc.subjectWireless passive sensoren_US
dc.subjectBars (metal)en_US
dc.subjectConcrete placingen_US
dc.subjectConcretesen_US
dc.subjectOptical resonatorsen_US
dc.subjectProbesen_US
dc.subjectRadio transceiversen_US
dc.subjectReinforced concreteen_US
dc.subjectReinforcementen_US
dc.subjectResonatorsen_US
dc.subjectRing gagesen_US
dc.subjectComplex mediumen_US
dc.subjectDisplacement sensoren_US
dc.subjectPassive sensoren_US
dc.subjectReinforcing baren_US
dc.subjectSplit ring resonatoren_US
dc.subjectStrain sensorsen_US
dc.subjectStructural health monitoring (SHM)en_US
dc.titleWireless sensing in complex electromagnetic media: construction materials and structural monitoringen_US
dc.typeArticleen_US

Files