Green/yellow solid state lighting via radiative and nonradiative energy transfer involving colloidal semiconductor nanocrystals

Date

2009-08-05

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
14
downloads

Citation Stats

Series

Abstract

LEDs made of In(x)Ga(1-x)N and (Al(x)Ga(1-x))(1-y)In(y)P suffer from significantly reduced quantum efficiency and luminous efficiency in the green/yellow spectral ranges. To address these problems, we present the design, growth, fabrication, hybridization, and characterization of proof-of-concept green/yellow hybrid LEDs that utilize radiative and nonradiative [Forster resonance energy transfer (FRET)] energy transfers in their colloidal semiconductor nanocrystals (NCs) integrated on near-UV LEDs. In our first NC-LED, we realize a color-converted LED that incorporate green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 548 nm) on near-UV InGaN/GaN LEDs (lambda(EL) = 379 nm). In our second NC-LED, we implement a color-converted FRET-enhanced LED. For that, we hybridize a custom-design assembly of cyan-and green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 490 and 548 nm) on near-UV LEDs. Using a proper mixture of differently sized NCs, we obtain a quantum efficiency enhancement of 9% by recycling trapped excitons via FRET. With FRET-NC-LEDs, we show that it is possible to obtain a luminous efficacy of 425 lm/W(opt) and a luminous efficiency of 94 lm/W, using near-UV LEDs with a 40% external quantum efficiency. Finally, we investigate FRET-converted light-emitting structures that use nonradiative energy transfer directly from epitaxial quantum wells to colloidal NCs. These proof-of-concept demonstrations show that FRET-based NC-LEDs hold promise for efficient solid-state lighting in green/yellow.

Source Title

IEEE Journal of Selected Topics in Quantum Electronics

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English