Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications

buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828en_US
dc.citation.epage1900028-39en_US
dc.citation.issueNumber14en_US
dc.citation.spage1900028-1en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorGhobadi, Amiren_US
dc.contributor.authorGhobadi, Türkan Gamze Ulusoyen_US
dc.contributor.authorKaradaş, Ferdien_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.contributor.bilkentauthorGhobadi, Ghobadi
dc.contributor.bilkentauthorGhobadi, Türkan Gamze Ulusoy
dc.contributor.bilkentauthorKaradaş, Ferdi
dc.contributor.bilkentauthorÖzbay, Ekmel
dc.date.accessioned2020-02-10T07:02:51Z
dc.date.available2020-02-10T07:02:51Z
dc.date.issued2019
dc.departmentDepartment of Chemistryen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn both photovoltaic (PV) and photoelectrochemical water splitting (PEC‐WS) solar conversion devices, the ultimate aim is to design highly efficient, low cost, and large‐scale compatible cells. To achieve this goal, the main step is the efficient coupling of light into active layer. This can be obtained in bulky semiconductor‐based designs where the active layer thickness is larger than light penetration depth. However, most low‐bandgap semiconductors have a carrier diffusion length much smaller than the light penetration depth. Thus, photogenerated electron–hole pairs will recombine within the semiconductor bulk. Therefore, an efficient design should fully harvest light in dimensions in the order of the carriers' diffusion length to maximize their collection probability. For this aim, in recent years, many studies based on metasurfaces and metamaterials were conducted to obtain broadband and near‐unity light absorption in subwavelength ultrathin semiconductor thicknesses. This review summarizes these strategies in five main categories: light trapping based on i) strong interference in planar multilayer cavities, ii) metal nanounits, iii) dielectric units, iv) designed semiconductor units, and v) trapping scaffolds. The review highlights recent studies in which an ultrathin active layer has been coupled to the above‐mentioned trapping schemes to maximize the cell optical performance.en_US
dc.description.sponsorshipTUBITAK. Grant Numbers: 113E331, 114E374, 115F560en_US
dc.description.sponsorshipTurkish Academy of Sciencesen_US
dc.embargo.release2020-07-19
dc.identifier.doi10.1002/adom.201900028en_US
dc.identifier.issn2195-1071
dc.identifier.urihttp://hdl.handle.net/11693/53206
dc.language.isoEnglishen_US
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.relation.isversionofhttps://doi.org/10.1002/adom.201900028en_US
dc.source.titleAdvanced Optical Materialsen_US
dc.subjectLight trappingen_US
dc.subjectMetamaterialsen_US
dc.subjectMetasurfacesen_US
dc.subjectPhotovoltaicsen_US
dc.subjectWater splittingen_US
dc.titleSemiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applicationsen_US
dc.typeReviewen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Semiconductor_Thin_Film_Based_Metasurfaces_and_Metamaterials_for_Photovoltaic_and_Photoelectrochemical_Water_Splitting_Applications.pdf
Size:
9.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: