Exact and approximate decoupling and noninteracting control problems

Date

1989

Editor(s)

Advisor

Özgüler, A. Bülent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
50
downloads

Series

Abstract

In this thesis, we consider “exact” and “approximate” versions of the disturbance decoupling problem and the noninteracting control problem for linear, time-invariant systems. In the exact versions of these problems, we obtain necessary and sufficient conditions for the existence of an internally stabilizing dynamic output feedback controller such that prespecified interactions between certain sets of inputs and certain sets of outputs are annihilated in the closed-loop system. In the approximate version of these problems we require these interactions to be quenched in the ‘Hoo sense, up to any degree of accuracy. The solvability of the noninteracting control problems are shown to be equivalent to the existence of a common solution to two linear matrix equations over a principal ideal domain. A common solution to these equations exists if and only if the equations each have a solution and a bilateral matrix equation is solvable. This yields a system theoretical interpretation for the solvability of the original noninteracting control problem.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type