Atomic scale study of friction and energy dissipation

buir.contributor.authorÇıracı, Salim
buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.epage916en_US
dc.citation.issueNumber9en_US
dc.citation.spage911en_US
dc.citation.volumeNumber254en_US
dc.contributor.authorÇıracı, Salimen_US
dc.contributor.authorBuldum, A.en_US
dc.date.accessioned2015-07-28T11:57:05Z
dc.date.available2015-07-28T11:57:05Z
dc.date.issued2003-05en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractThis paper presents an analysis of the interaction energy and various forces between two surfaces, and the microscopic study of friction. Atomic-scale simulations of dry sliding friction and boundary lubrication are based on the classical molecular dynamics (CMD) calculations using realistic empirical potentials. The dry sliding of a single metal asperity on an incommensurate substrate surface exhibits a quasi-periodic variation of the lateral force with two different stick-slip stage involving two structural transformation followed by a wear. The contact area of the asperity increases discontinuously with increasing normal force. Xe atoms placed between two atomically flat Ni surfaces screen the Ni-Ni interaction, decrease the corrugation of the potential energy as well as the friction force at submonolayer coverage. We present a phononic model of energy dissipation from an asperity to the substrates. (C) 2003 Elsevier Science B.V. All rights reserved.en_US
dc.identifier.doi10.1016/S0043-1648(03)00246-1en_US
dc.identifier.issn0043-1648
dc.identifier.urihttp://hdl.handle.net/11693/11205
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/S0043-1648(03)00246-1en_US
dc.source.titleWearen_US
dc.subjectAtomic-scale studyen_US
dc.subjectFrictionen_US
dc.subjectStick-slipen_US
dc.titleAtomic scale study of friction and energy dissipationen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-S0043-1648(03)00246-1.pdf
Size:
309.07 KB
Format:
Adobe Portable Document Format
Description:
Full printable version