Photoluminescent electrospun polymeric nanofibers incorporating germanium nanocrystals

Series

Abstract

The photoluminescent germanium nanocrystals (Ge-NCs) were successfully incorporated into electrospun polymeric nanofiber matrix in order to develop photoluminescent nanofibrous composite web. In the first step, the synthesis of Ge-NCs was achieved by nanosecond pulsed laser ablation of bulk germanium wafer immersed in organic liquid. The size, the structural and the chemical characteristics of Ge-NCs investigated by TEM, XPS, XRD and Raman spectroscopy revealed that the Ge-NCs were highly pure and highly crystalline having spherical shape within 3-20 nm particle size distribution. In the second step, Ge-NCs were mixed with polyvinyl alcohol (PVA) polymer solution, and then, Ge-NC/PVA nanofibers were obtained via electrospinning technique. The electrospinning of Ge-NCs/PVA nanoweb composite structure was successful and bead-free Ge-NCs/PVA nanofibers having average fiber diameter of 185 ± 40 nm were obtained. The STEM analysis of the electrospun Ge-NCs/PVA nanofibers elucidated that the Ge-NCs were distributed homogeneously in the polymeric nanofiber matrix. The UV-Vis absorption and photoluminescence spectroscopy studies indicated the quantum confinement effect of Ge-NCs on the optical properties of the electrospun Ge-NCs/PVA nanoweb. © 2013 Elsevier Ltd. All rights reserved.

Source Title

Reactive and Functional Polymers

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English