One-step deposition of hydrophobic coatings on paper for printed-electronics applications

buir.contributor.authorÖnses, Mustafa Serdar
dc.citation.epage3512en_US
dc.citation.issueNumber5en_US
dc.citation.spage3503en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorGözütok, Z.en_US
dc.contributor.authorKinj, Ö.en_US
dc.contributor.authorTorun, İ.en_US
dc.contributor.authorÖzdemir, A. T.en_US
dc.contributor.authorÖnses, Mustafa Serdaren_US
dc.date.accessioned2020-01-31T12:40:35Z
dc.date.available2020-01-31T12:40:35Z
dc.date.issued2019
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractThe ability to pattern highly conductive features on paper substrates is critically important for applications in radio frequency identification (RFID) tags, displays, sensors, printed electronics, and diagnostics. Ink-jet printing particle-free reactive silver inks is an additive, material efficient and versatile strategy for fabrication of highly conductive patterns; however, the intrinsic wetting properties of cellulose based papers are not suitable to serve as substrates for this process. This study reports one-step and practical modification of the surface of paper substrates using industrially available materials. The paper substrates were dip-coated with films of hydrocarbon and fluorocarbon based polymeric resins. Ink-jet printing particle-free reactive silver inks on the modified paper substrates followed by fast thermal annealing resulted in highly conductive patterns. The coatings improved the conductivity of the patterns and reduced the number of printing layers required to obtain conductivity. We finally demonstrated fabrication of a printed RFID tag on the coated paper substrates operating at the frequency range of 865–870 MHz.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-01-31T12:40:35Z No. of bitstreams: 2 One_step_deposition_of_hydrophobic_coatings_on_paper_for_printed_electronics_applications.pdf: 2172867 bytes, checksum: f4f58374df660e978e28684603f643ca (MD5) One_step_deposition_of_hydrophobic_coatings_on_paper_for_printed_electronics_applications.pdf: 2172867 bytes, checksum: f4f58374df660e978e28684603f643ca (MD5)en
dc.description.provenanceMade available in DSpace on 2020-01-31T12:40:35Z (GMT). No. of bitstreams: 2 One_step_deposition_of_hydrophobic_coatings_on_paper_for_printed_electronics_applications.pdf: 2172867 bytes, checksum: f4f58374df660e978e28684603f643ca (MD5) One_step_deposition_of_hydrophobic_coatings_on_paper_for_printed_electronics_applications.pdf: 2172867 bytes, checksum: f4f58374df660e978e28684603f643ca (MD5) Previous issue date: 2019en
dc.identifier.doi10.1007/s10570-019-02326-yen_US
dc.identifier.issn0969-0239
dc.identifier.urihttp://hdl.handle.net/11693/52950
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s10570-019-02326-yen_US
dc.source.titleCelluloseen_US
dc.subjectPrinted electronicsen_US
dc.subjectPaperen_US
dc.subjectSurface modificationen_US
dc.subjectNanoparticlesen_US
dc.subjectSilveren_US
dc.titleOne-step deposition of hydrophobic coatings on paper for printed-electronics applicationsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
One_step_deposition_of_hydrophobic_coatings_on_paper_for_printed_electronics_applications.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
View / Download