Ultraminiature antennas combining subwavelength resonators and a very-high-ε uniform substrate: the case of lithium niobate

buir.contributor.authorGökkavas, Mutlu
buir.contributor.authorGündoğdu, Tamara Funda
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage5081en_US
dc.citation.issueNumber7en_US
dc.citation.spage5071en_US
dc.citation.volumeNumber68en_US
dc.contributor.authorSerebryannikov, A. E.
dc.contributor.authorGökkavas, Mutlu
dc.contributor.authorGündoğdu, Tamara Funda
dc.contributor.authorVolski, V.
dc.contributor.authorVandenbosch, G. A. E.
dc.contributor.authorVasylchenko, A.
dc.contributor.authorÖzbay, Ekmel
dc.date.accessioned2021-02-18T08:51:27Z
dc.date.available2021-02-18T08:51:27Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractCombining the effects of subwavelength resonators and very-high-permittivity substrates enables a high extent of miniaturization, even for very simple, split-loop resonators. Here, we demonstrate how requirements to the substrate's permittivity are connected with the desired extent of miniaturization and why materials with a relative permittivity of 30 <; ε <; 100, like lithium niobate, may offer a real possibility to miniaturize. For demonstration purposes, we designed, in line with this approach, an ultraminiature dual-band antenna to operate at 2.8 and 4.2 GHz. The antenna is fabricated using microfabrication techniques and studied experimentally. There is good agreement between the measurement and simulation results. The realized gain is about -5 dB for the first resonance, at which the size of the substrate-resonator block is λ/24. The obtained results demonstrate the potential of the suggested approach, which is expected to be applicable to a very wide class of subwavelength resonators and a wide variety of substrates with high permittivity.en_US
dc.description.sponsorshipThis work was supported by the European Union’s Horizon-2020 Research and Innovation Program through the Marie Skłodowska-Curie under Grant 708200.en_US
dc.identifier.doi10.1109/TAP.2020.2975544en_US
dc.identifier.issn0018-926X
dc.identifier.urihttp://hdl.handle.net/11693/75435
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/TAP.2020.2975544en_US
dc.source.titleIEEE Transactions on Antennas and Propagationen_US
dc.subjectLithium compoundsen_US
dc.subjectMetamaterialsen_US
dc.subjectMiniature antennasen_US
dc.subjectMultifrequency antennasen_US
dc.titleUltraminiature antennas combining subwavelength resonators and a very-high-ε uniform substrate: the case of lithium niobateen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultraminiature_Antennas_Combining_Subwavelength_Resonators_and_a_Very-High-ε_Uniform_Substrate_The_Case_of_Lithium_Niobate.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: