A novel constitutive model for surface elasticity at finite strains suitable across compressibility spectrum

Limited Access
This item is unavailable until:
2025-03-24

Date

2023-03-24

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

European Journal of Mechanics A - Solids

Print ISSN

0997-7538

Electronic ISSN

1873-7285

Publisher

Elsevier Masson

Volume

100

Issue

Pages

1 - 14

Language

en

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
32
views
9
downloads

Series

Abstract

The surface elasticity theory of Gurtin–Murdoch has proven to be remarkably successful in predicting the behavior of materials at the nano scale, which can be attributed to the fact that the surface-to-volume ratio increases as the problem dimension decreases. On the other hand, surface tension can deform soft elastic solids even at the macro scale resulting e.g. in elastocapillary instabilities in soft filaments reminiscent of Plateau–Rayleigh instabilities in fluids. Due to the increasing number of applications involving nanoscale structures and soft solids such as gels, the surface elasticity theory has experienced a prolific growth in the past two decades. Despite the large body of literature on the subject, the constitutive models of surface elasticity theory at large deformations are not suitable to capture the surface behavior from fully compressible to nearly incompressible elasticity, especially from a computational perspective. A physically meaningful and proper decomposition of the surface free energy density in terms of area-preserving and area-varying contributions remains yet to be established. We show that an immediate and intuitive generalization of the small-deformation surface constitutive models does not pass the simple extension test at large deformations and results in unphysical behavior at lower Poisson’s ratios. Thus, the first contribution of the manuscript is to introduce a novel decomposed surface free energy density that recovers surface elasticity across the compressibility spectrum. The second objective of this paper is to formulate an axisymmetric counterpart of the elastocapillary theory methodically derived from its three-dimensional format based on meaningful measures relevant to the proposed surface elasticity model. Various aspects of the problem are elucidated and discussed through numerical examples using the finite element method enhanced with surface elasticity.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)