Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performance

buir.contributor.authorUyar, Tamer
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481
dc.citation.epage35774en_US
dc.citation.issueNumber41en_US
dc.citation.spage35757en_US
dc.citation.volumeNumber9en_US
dc.contributor.authorPradhan, A. C.en_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2018-04-12T11:08:36Z
dc.date.available2018-04-12T11:08:36Z
dc.date.issued2017-09en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractThe one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co3O4-CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co3O4-CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co3O4-CuO NFs but also single mesoporous Co3O4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co3O4 nanofibers framework (Co3O4-CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co3O4-CuO NFs is due to the internal charge transfer between Co2+ to Co3+ and Cu2+, proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co3O4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co3O4-CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co3O4-CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co3O4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co3O4-CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:08:36Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acsami.7b09026en_US
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/11693/37284
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acsami.7b09026en_US
dc.source.titleACS Applied Materials and Interfacesen_US
dc.subjectElectrospinningen_US
dc.subjectMesoporousen_US
dc.subjectNanofibersen_US
dc.subjectPhenolic compoundsen_US
dc.subjectQuantum confinementen_US
dc.subjectVisible lighten_US
dc.subjectAbsorption spectroscopyen_US
dc.subjectCharge transferen_US
dc.subjectComplexationen_US
dc.subjectElectrochemical impedance spectroscopyen_US
dc.subjectElectromagnetic wave absorptionen_US
dc.subjectElectrospinningen_US
dc.subjectEnergy gapen_US
dc.subjectLighten_US
dc.subjectLight absorptionen_US
dc.subjectMesoporous materialsen_US
dc.subjectMixingen_US
dc.subjectNanofibersen_US
dc.subjectNanoparticlesen_US
dc.subjectOxygen vacanciesen_US
dc.subjectPhenolsen_US
dc.subjectPhotocatalysisen_US
dc.subjectPolymersen_US
dc.subjectQuantum confinementen_US
dc.subjectRaman scatteringen_US
dc.subjectSemiconductor quantum wellsen_US
dc.subjectSpinning (fibers)en_US
dc.subjectSurface scatteringen_US
dc.subjectSynthesis (chemical)en_US
dc.subjectUltraviolet spectroscopyen_US
dc.subjectDiffuse reflectance spectrumen_US
dc.subjectHigh photocatalytic activitiesen_US
dc.subjectMesoporousen_US
dc.subjectPhenolic compoundsen_US
dc.subjectSurface enhanced Raman Scattering (SERS)en_US
dc.subjectUV-Vis absorption spectroscopyen_US
dc.subjectVisible lighten_US
dc.subjectVisible-light photocatalysisen_US
dc.subjectCopper oxidesen_US
dc.titleMorphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light photocatalysis performanceen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morphological Control of Mesoporosity and Nanoparticles within Co3O4–CuO Electrospun Nanofibers Quantum Confinement and Visible Light Photocatalysis Performance.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format
Description:
Full printable version