Fine-grained object recognition and zero-shot learning in multispectral imagery

dc.contributor.authorSümbül, Genceren_US
dc.contributor.authorAksoy, Selimen_US
dc.contributor.authorCinbiş, R. G.en_US
dc.coverage.spatialIzmir, Turkeyen_US
dc.date.accessioned2019-02-21T16:04:52Z
dc.date.available2019-02-21T16:04:52Z
dc.date.issued2018en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 2-5 May 2018en_US
dc.description.abstractWe present a method for fine-grained object recognition problem, that aims to recognize the type of an object among a large number of sub-categories, and zero-shot learning scenario on multispectral images. In order to establish a relation between seen classes and new unseen classes, a compatibility function between image features extracted from a convolutional neural network and auxiliary information of classes is learnt. Knowledge transfer for unseen classes is carried out by maximizing this function. Performance of the model (15.2%) evaluated with manually annotated attributes, a natural language model, and a scientific taxonomy as auxiliary information is promisingly better than the other methods for 16 test classes.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:04:52Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1109/SIU.2018.8404256
dc.identifier.isbn9781538615010
dc.identifier.urihttp://hdl.handle.net/11693/50215
dc.language.isoTurkish
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/SIU.2018.8404256
dc.source.title2018 26th Signal Processing and Communications Applications Conference (SIU)en_US
dc.subjectFine-grained classificationen_US
dc.subjectObject recognitionen_US
dc.subjectZero-shot learningen_US
dc.titleFine-grained object recognition and zero-shot learning in multispectral imageryen_US
dc.title.alternativeMultispektral görüntülerde ince taneli nesne tanıma ve örneksiz öğrenmeen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fine_grained_object_recognition_and_zero_shot_learning_in_multispectral_imagery.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Full printable version