Fine-grained object recognition and zero-shot learning in multispectral imagery

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
9
downloads

Citation Stats

Series

Abstract

We present a method for fine-grained object recognition problem, that aims to recognize the type of an object among a large number of sub-categories, and zero-shot learning scenario on multispectral images. In order to establish a relation between seen classes and new unseen classes, a compatibility function between image features extracted from a convolutional neural network and auxiliary information of classes is learnt. Knowledge transfer for unseen classes is carried out by maximizing this function. Performance of the model (15.2%) evaluated with manually annotated attributes, a natural language model, and a scientific taxonomy as auxiliary information is promisingly better than the other methods for 16 test classes.

Source Title

2018 26th Signal Processing and Communications Applications Conference (SIU)

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

Turkish