Charge Trapping Memory with 2.85-nm Si-Nanoparticles Embedded in HfO2

buir.contributor.authorOkyay, Ali Kemal
dc.citation.epage21en_US
dc.citation.spage17en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorTurgut, Berk Berkanen_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorNayfeh, A.en_US
dc.coverage.spatialChicago, IL, United States
dc.date.accessioned2016-02-08T12:12:49Z
dc.date.available2016-02-08T12:12:49Z
dc.date.issued2015-05en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.descriptionConference name: 227th ECS Meeting
dc.descriptionDate of Conference: 24–28 May 2015
dc.description.abstractIn this work, the effect of embedding 2.85-nm Si-nanoparticles charge trapping layer in between double layers of high-κ Al<inf>2</inf>O<inf>3</inf>/HfO<inf>2</inf> oxides is studied. Using high frequency (1 MHz) C-V<inf>gate</inf> measurements, the memory showed a large memory window at low program/erase voltages due to the charging of the Si-nanoparticles. The analysis of the C-V characteristics shows that mixed charges are being stored in the Si-nanoparticles where electrons get stored during the program operation while holes dominate in the Si-nanoparticles during the erase operation. Moreover, the retention characteristic of the memory is studied by measuring the memory hysteresis in time. The obtained retention characteristic (35.5% charge loss in 10 years) is due to the large conduction and valence band offsets between the Si-nanoparticles and the Al<inf>2</inf>O<inf>3</inf>/HfO<inf>2</inf> tunnel oxide. The results show that band engineering is essential in future low-power non-volatile memory devices. In addition, the results show that Si-nanoparticles are promising in memory applications.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:12:49Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1149/06640.0017ecsten_US
dc.identifier.issn1938-5862
dc.identifier.urihttp://hdl.handle.net/11693/28163
dc.language.isoEnglishen_US
dc.publisherECSen_US
dc.relation.isversionofhttp://dx.doi.org/10.1149/06640.0017ecsten_US
dc.source.titleECS Transactionsen_US
dc.subjectAluminumen_US
dc.subjectCharge trappingen_US
dc.subjectData storage equipmenten_US
dc.subjectDigital storageen_US
dc.subjectNanoparticlesen_US
dc.subjectNanotechnologyen_US
dc.subjectSiliconen_US
dc.subjectC-V characteristicen_US
dc.subjectCharge trapping layersen_US
dc.subjectCharge trapping memoryen_US
dc.subjectHigh frequency HFen_US
dc.subjectMemory applicationsen_US
dc.subjectNonvolatile memory devicesen_US
dc.subjectRetention characteristicsen_US
dc.subjectValence band offsetsen_US
dc.subjectC (programming language)en_US
dc.titleCharge Trapping Memory with 2.85-nm Si-Nanoparticles Embedded in HfO2en_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Charge_Trapping_Memory_with_2.85-nm_Si-Nanoparticles_Embedded_in_HfO2.pdf
Size:
174.72 KB
Format:
Adobe Portable Document Format
Description: