Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

Date
2014-09-08
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
APL Materials
Print ISSN
2166-532X
Electronic ISSN
Publisher
AIP Publishing
Volume
2
Issue
9
Pages
096109-1 - 096109-8
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 degrees C onto electrospun polymeric nanofibers, (iii) calcination at 500 degrees C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 degrees C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Course
Other identifiers
Book Title
Keywords
Boron-nitride Nanotubes, Temperature, Templates, Composite, Property
Citation
Published Version (Please cite this version)