Generalized theory of förster-type nonradiative energy transfer in nanostructures with mixed dimensionality

Date

2013-04-16

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
19
downloads

Citation Stats

Attention Stats

Series

Abstract

Forster-type nonradiative energy transfer (NRET) is widely used, especially utilizing nanostructures in different combinations and configurations. However, the existing well-accepted Forster theory is only for the case of a single particle serving as a donor together with another particle serving as an acceptor. There are also other special cases previously studied; however, there is no complete picture and unified understanding. Therefore, there is a strong need for a complete theory that models Forster-type NRET for the cases of mixed dimensionality including all combinations and configurations. We report a generalized theory for the Forster-type, NRET, which includes the derivation of the effective dielectric function due to the donor in different confinement geometries and the derivation of transfer rates distance dependencies due to the acceptor in different confinement geometries, resulting in a complete picture and understanding of the mixed dimensionality.

Source Title

Journal of Physical Chemistry C

Publisher

American Chemical Society

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English