Synthesis of V2 O3 nanoplates for the exploration of the correlated supercritical state

buir.contributor.authorRasouli, Hamid Reza
buir.contributor.authorMehmood, Naveed
buir.contributor.authorÇakıroğlu, Onur
buir.contributor.authorSürmeli, Engin Can
buir.contributor.authorKasırga, T. Serkan
dc.citation.epage161107-1en_US
dc.citation.issueNumber16en_US
dc.citation.spage161107-6en_US
dc.citation.volumeNumber100en_US
dc.contributor.authorRasouli, Hamid Rezaen_US
dc.contributor.authorMehmood, Naveeden_US
dc.contributor.authorÇakıroğlu, Onuren_US
dc.contributor.authorSürmeli, Engin Canen_US
dc.contributor.authorKasırga, T. Serkanen_US
dc.date.accessioned2020-02-07T07:23:44Z
dc.date.available2020-02-07T07:23:44Z
dc.date.issued2019
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractPeculiar features exist in the stress-temperature phase stability diagram of V2O3, such as a first-order phase transition between the paramagnetic insulating and metallic phases that ends with a critical point, quantum phase transition, and a triple point. These features remain largely unexplored, and the exact nature of the phase transitions is not clear due to very limited control over the stress in bulk or film samples. Here, we show the synthesis of single-crystal V2O3 nanoplates using chemical vapor deposition via van der Waals epitaxy. Thickness of the V2O3 nanoplates range from a few to hundreds of nanometers, and they can be mechanically exfoliated from the growth substrate. Using Raman spectroscopy on the nanoplates, we reveal that, upon heating, V2O3 enters a supercritical state for both tensile strained and relaxed crystals with a similar out-of-plane response. Transmission electron microscopy on V2O3 nanoplates hints at the existence of a structural change when the crystals are heated. Our results show that V2O3nanoplates should be useful for studying the physics of the supercritical state and the phase stability of V2O3 to enable new horizons in applications.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-07T07:23:44Z No. of bitstreams: 1 Synthesis_of_V2_O3_nanoplates_for_the_exploration_of_the_correlated_supercritical_state.pdf: 2247911 bytes, checksum: d20ea0c81ce27ad375b81e0bb4b331e5 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-07T07:23:44Z (GMT). No. of bitstreams: 1 Synthesis_of_V2_O3_nanoplates_for_the_exploration_of_the_correlated_supercritical_state.pdf: 2247911 bytes, checksum: d20ea0c81ce27ad375b81e0bb4b331e5 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1103/PhysRevB.100.161107en_US
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/11693/53155
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1103/PhysRevB.100.161107en_US
dc.source.titlePhysical Review Ben_US
dc.subjectCritical phenomenaen_US
dc.subjectMetal-insulator transitionen_US
dc.subjectPhase diagramsen_US
dc.subjectSynthesisen_US
dc.titleSynthesis of V2 O3 nanoplates for the exploration of the correlated supercritical stateen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Synthesis_of_V2_O3_nanoplates_for_the_exploration_of_the_correlated_supercritical_state.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description:
View / Download