Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage10en_US
dc.citation.issueNumber1en_US
dc.citation.spage1en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorHajian, H.en_US
dc.contributor.authorDereshgi, S. A.en_US
dc.contributor.authorBozok, B.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:07:32Z
dc.date.available2018-04-12T11:07:32Z
dc.date.issued2017en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractIn this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al2O3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity. © 2017 The Author(s).en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:07:32Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1038/s41598-017-15312-wen_US
dc.identifier.eissn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/11693/37257
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttps://doi.org/10.1038/s41598-017-15312-wen_US
dc.source.titleScientific Reportsen_US
dc.subjectMetamaterialsen_US
dc.subjectNanophotonics and plasmonicsen_US
dc.subjectSub-wavelength opticsen_US
dc.titleDisordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growthen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.pdf
Size:
4.59 MB
Format:
Adobe Portable Document Format
Description:
Full printable version