A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate
dc.citation.epage | 4690 | en_US |
dc.citation.issueNumber | 24 | en_US |
dc.citation.spage | 4682 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Isiksacan, Z. | en_US |
dc.contributor.author | Erel, O. | en_US |
dc.contributor.author | Elbuken, C. | en_US |
dc.date.accessioned | 2018-04-12T10:48:12Z | |
dc.date.available | 2018-04-12T10:48:12Z | |
dc.date.issued | 2016 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R2 = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:48:12Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en_US |
dc.identifier.doi | 10.1039/C6LC01036A | en_US |
dc.identifier.issn | 1473-0197 | |
dc.identifier.uri | http://hdl.handle.net/11693/36679 | |
dc.language.iso | English | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1039/C6LC01036A | en_US |
dc.source.title | Lab on a Chip | en_US |
dc.subject | Polycarbonate | en_US |
dc.subject | Blood sampling | en_US |
dc.subject | Calculation | en_US |
dc.subject | Erythrocyte aggregation | en_US |
dc.subject | Erythrocyte sedimentation rate | en_US |
dc.subject | Force | en_US |
dc.subject | Human | en_US |
dc.subject | Light emitting diode | en_US |
dc.subject | Measurement accuracy | en_US |
dc.subject | Measurement repeatability | en_US |
dc.subject | Microfluidics | en_US |
dc.subject | Point of care system | en_US |
dc.subject | Portable equipment | en_US |
dc.subject | Priority journal | en_US |
dc.subject | Shear rate | en_US |
dc.title | A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.pdf
- Size:
- 3.42 MB
- Format:
- Adobe Portable Document Format
- Description: