On the zero distributionof remainders of entire power series
dc.citation.epage | 397 | en_US |
dc.citation.issueNumber | 3 - 4 | en_US |
dc.citation.spage | 391 | en_US |
dc.citation.volumeNumber | 43 | en_US |
dc.contributor.author | Ostrovskll, I. V. | en_US |
dc.date.accessioned | 2019-02-05T10:52:04Z | |
dc.date.available | 2019-02-05T10:52:04Z | |
dc.date.issued | 2001 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | It has been shown by the author that, if all remainders of the power series of an entire function f have only real positive zeros, then log M(r, f) = O((1og r)'), r -+ ca. The main results of the paper are the following: (i) if at least two different remainders have only real positive zeros, then logM(r,f) = O(fi, r+ ca; (ii) this estimate cannot be improved even in the case if one replaces two by any given finite number of remainders. | en_US |
dc.description.provenance | Submitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-02-05T10:52:04Z No. of bitstreams: 1 On_the_zero_distribution_of_remainders_of_entire_power_series.pdf: 303483 bytes, checksum: 7b67c99effec209cd087ae38634470c8 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2019-02-05T10:52:04Z (GMT). No. of bitstreams: 1 On_the_zero_distribution_of_remainders_of_entire_power_series.pdf: 303483 bytes, checksum: 7b67c99effec209cd087ae38634470c8 (MD5) Previous issue date: 2001 | en |
dc.identifier.doi | 10.1080/17476930108815328 | en_US |
dc.identifier.eissn | 1563-5066 | |
dc.identifier.issn | 0278-1077 | |
dc.identifier.uri | http://hdl.handle.net/11693/48870 | |
dc.language.iso | English | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.isversionof | https://doi.org/10.1080/17476930108815328 | en_US |
dc.source.title | Complex Variables and Elliptic Equations | en_US |
dc.subject | Angular zero distribution | en_US |
dc.subject | Entire function | en_US |
dc.subject | Power series | en_US |
dc.subject | Remainder | en_US |
dc.title | On the zero distributionof remainders of entire power series | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On_the_zero_distribution_of_remainders_of_entire_power_series.pdf
- Size:
- 296.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: