On the zero distributionof remainders of entire power series

dc.citation.epage397en_US
dc.citation.issueNumber3 - 4en_US
dc.citation.spage391en_US
dc.citation.volumeNumber43en_US
dc.contributor.authorOstrovskll, I. V.en_US
dc.date.accessioned2019-02-05T10:52:04Z
dc.date.available2019-02-05T10:52:04Z
dc.date.issued2001en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIt has been shown by the author that, if all remainders of the power series of an entire function f have only real positive zeros, then log M(r, f) = O((1og r)'), r -+ ca. The main results of the paper are the following: (i) if at least two different remainders have only real positive zeros, then logM(r,f) = O(fi, r+ ca; (ii) this estimate cannot be improved even in the case if one replaces two by any given finite number of remainders.en_US
dc.description.provenanceSubmitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2019-02-05T10:52:04Z No. of bitstreams: 1 On_the_zero_distribution_of_remainders_of_entire_power_series.pdf: 303483 bytes, checksum: 7b67c99effec209cd087ae38634470c8 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-05T10:52:04Z (GMT). No. of bitstreams: 1 On_the_zero_distribution_of_remainders_of_entire_power_series.pdf: 303483 bytes, checksum: 7b67c99effec209cd087ae38634470c8 (MD5) Previous issue date: 2001en
dc.identifier.doi10.1080/17476930108815328en_US
dc.identifier.eissn1563-5066
dc.identifier.issn0278-1077
dc.identifier.urihttp://hdl.handle.net/11693/48870
dc.language.isoEnglishen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttps://doi.org/10.1080/17476930108815328en_US
dc.source.titleComplex Variables and Elliptic Equationsen_US
dc.subjectAngular zero distributionen_US
dc.subjectEntire functionen_US
dc.subjectPower seriesen_US
dc.subjectRemainderen_US
dc.titleOn the zero distributionof remainders of entire power seriesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_zero_distribution_of_remainders_of_entire_power_series.pdf
Size:
296.37 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: