Near-field energy transfer into silicon inversely proportional to distance using quasi-2D colloidal quantum well donors

buir.contributor.authorHumayun, Muhammad Hamza
buir.contributor.authorHernandez-Martinez, Pedro Ludwig
buir.contributor.authorGheshlaghi, Negar
buir.contributor.authorErdem, Onur
buir.contributor.authorAltıntaş, Yemliha
buir.contributor.authorShabani, Farzan
buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
buir.contributor.orcidHernandez-Martinez, Pedro Ludwig|0000-0001-6158-0430
dc.citation.epage2103524-9en_US
dc.citation.issueNumber41en_US
dc.citation.spage2103524-1en_US
dc.citation.volumeNumber17en_US
dc.contributor.authorHumayun, Muhammad Hamza
dc.contributor.authorHernandez-Martinez, Pedro Ludwig
dc.contributor.authorGheshlaghi, Negar
dc.contributor.authorErdem, Onur
dc.contributor.authorAltıntaş, Yemliha
dc.contributor.authorShabani, Farzan
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2022-03-01T08:45:27Z
dc.date.available2022-03-01T08:45:27Z
dc.date.issued2021-09-12
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractSilicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d−1 with 25% efficiency at a donor–acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.en_US
dc.description.provenanceSubmitted by Esma Aytürk (esma.babayigit@bilkent.edu.tr) on 2022-03-01T08:45:27Z No. of bitstreams: 1 Near-Field_Energy_Transfer_into_Silicon_Inversely_Proportional_to_Distance_Using_Quasi-2D_Colloidal_Quantum_Well_Donors.pdf: 1864393 bytes, checksum: 176142fe65902b145b41d2d3db58b2a7 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-03-01T08:45:27Z (GMT). No. of bitstreams: 1 Near-Field_Energy_Transfer_into_Silicon_Inversely_Proportional_to_Distance_Using_Quasi-2D_Colloidal_Quantum_Well_Donors.pdf: 1864393 bytes, checksum: 176142fe65902b145b41d2d3db58b2a7 (MD5) Previous issue date: 2021-09-12en
dc.embargo.release2022-09-12
dc.identifier.doi10.1002/smll.202103524en_US
dc.identifier.eissn1613-6829
dc.identifier.issn1613-6810
dc.identifier.urihttp://hdl.handle.net/11693/77644
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.relation.isversionofhttps://doi.org/10.1002/smll.202103524en_US
dc.source.titleSmallen_US
dc.subjectColloidal nanoplateletsen_US
dc.subjectDistance dependencyen_US
dc.subjectFRETen_US
dc.subjectNonradiative energy transferen_US
dc.subjectSelf-assemblyen_US
dc.subjectSemiconductor nanocrystalsen_US
dc.subjectSiliconen_US
dc.titleNear-field energy transfer into silicon inversely proportional to distance using quasi-2D colloidal quantum well donorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Near-Field_Energy_Transfer_into_Silicon_Inversely_Proportional_to_Distance_Using_Quasi-2D_Colloidal_Quantum_Well_Donors.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: