Experimental thermal performance characterization of flat grooved heat pipes
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The thermal characterization of aluminum flat grooved heat pipes is performed experimentally for different groove dimensions. Three heat pipes with groove widths of 0.2 mm, 0.4 mm, and 1.5 mm are used in the experiments. The effect of the amount of the working fluid is extensively studied for each groove width. The results reveal that, although all three succeed in dissipating the heat input through the phase change of the working fluid by continuous evaporation and condensation, the effectiveness of the heat transfer increases with reduced groove width. Furthermore, it is observed that there exists an optimum operating point, where the temperature difference between the heating and cooling sections is at a minimum, and the magnitude of this temperature difference is a strong function of the groove width. To the best of the authors’ knowledge, the combined effects of groove dimensions and the amount of the working fluid, from fully flooded to dry, is reported for the first time for aluminum flat grooved heat pipes.