Synthesis of mesoporous lithium titanate thin films and monoliths as an anode material for high-rate lithium-ion batteries

dc.citation.epage18880en_US
dc.citation.issueNumber52en_US
dc.citation.spage18873en_US
dc.citation.volumeNumber22en_US
dc.contributor.authorBalcı, F. M.en_US
dc.contributor.authorKudu, Ö. U.en_US
dc.contributor.authorYılmaz, E.en_US
dc.contributor.authorDag, Ö.en_US
dc.date.accessioned2018-04-12T10:58:31Z
dc.date.available2018-04-12T10:58:31Z
dc.date.issued2016en_US
dc.departmentDepartment of Chemistryen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractMesoporous Li4Ti5O12 (LTO) thin film is an important anode material for lithium-ion batteries (LIBs). Mesoporous films could be prepared by self-assembly processes. A molten-salt-assisted self-assembly (MASA) process is used to prepare mesoporous thin films of LTOs. Clear solutions of CTAB, P123, LiNO3, HNO3, and Ti(OC4H9)4 in ethanol form gel-like meso-ordered films upon either spin or spray coating. In the assembly process, the CTAB/P123 molar ratio of 14 is required to accommodate enough salt species in the mesophase, in which the LiI/P123 ratio can be varied between molar ratios of 28 and 72. Calcination of the meso-ordered films produces transparent mesoporous spinel LTO films that are abbreviated as Cxx-yyy-zzz or CAxx-yyy-zzz (C=calcined, CA=calcined–annealed, xx=LiI/P123 molar ratio, and yyy=calcination and zzz=annealing temperatures in Celsius) herein. All samples were characterized by using XRD, TEM, N2-sorption, and Raman techniques and it was found that, at all compositions, the LTO spinel phase formed with or without an anatase phase as an impurity. Electrochemical characterization of the films shows excellent performance at different current rates. The CA40-350-450 sample performs best among all samples tested, yielding an average discharge capacity of (176±1) mA h g−1 at C/2 and (139±4) mA h g−1 at 50 C and keeping 92 % of its initial discharge capacity upon 50 cycles at C/2.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:58:31Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1002/chem.201604253en_US
dc.identifier.eissn1521-3765
dc.identifier.issn0947-6539
dc.identifier.urihttp://hdl.handle.net/11693/36962
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/chem.201604253en_US
dc.source.titleChemistry: A European Journalen_US
dc.subjectAnodesen_US
dc.subjectAssemblyen_US
dc.subjectCalcinationen_US
dc.subjectCharacterizationen_US
dc.subjectElectric batteriesen_US
dc.subjectElectrochemistryen_US
dc.subjectElectrodesen_US
dc.subjectFilmsen_US
dc.subjectLithiumen_US
dc.subjectLithium alloysen_US
dc.subjectLithium compoundsen_US
dc.subjectMesoporous materialsen_US
dc.subjectSelf assemblyen_US
dc.subjectThin film lithium ion batteriesen_US
dc.subjectThin filmsen_US
dc.subjectAnnealing temperaturesen_US
dc.subjectAnode material for lithium ion batteriesen_US
dc.subjectDischarge capacitiesen_US
dc.subjectElectrochemical characterizationsen_US
dc.subjectInitial discharge capacitiesen_US
dc.subjectMesoporous thin filmsen_US
dc.subjectRaman techniquesen_US
dc.subjectSelf assembly processen_US
dc.subjectLithium-ion batteriesen_US
dc.titleSynthesis of mesoporous lithium titanate thin films and monoliths as an anode material for high-rate lithium-ion batteriesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Synthesis of Mesoporous Lithium Titanate Thin Films and Monoliths as an Anode Material for High-Rate Lithium-Ion Batteries.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version