Interaction of CO2 with MnOx/Pd(111) reverse model catalytic interfaces

buir.contributor.authorArca, Anıl
buir.contributor.authorSadak, Ömer Faruk
buir.contributor.authorKarakurt, Bartu
buir.contributor.authorKoçak, Yusuf
buir.contributor.authorLyubinetsky, Igor
buir.contributor.authorÖzensoy, Emrah
buir.contributor.orcidKarakurt, Bartu|0000-0003-3491-7960
buir.contributor.orcidKoçak, Yusuf|0000-0003-4511-1321
buir.contributor.orcidÖzensoy, Emrah|0000-0003-4352-3824
dc.citation.epage7en_US
dc.citation.issueNumber13
dc.citation.spage[1]
dc.citation.volumeNumber24
dc.contributor.authorAnıl, Arca
dc.contributor.authorSadak, Ömer Faruk
dc.contributor.authorKarakurt, Bartu
dc.contributor.authorKoçak, Yusuf
dc.contributor.authorLyubinetsky, Igor
dc.contributor.authorÖzensoy, Emrah
dc.date.accessioned2024-03-18T07:57:33Z
dc.date.available2024-03-18T07:57:33Z
dc.date.issued2023-07-03
dc.departmentDepartment of Chemistry
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.description.abstractUnderstanding the activation of CO2 on the surface of the heterogeneous catalysts comprised of metal/metal oxide interfaces is of critical importance since it is not only a prerequisite for converting CO2 to value-added chemicals but also often, a rate-limiting step. In this context, our current work focuses on the interaction of CO2 with heterogeneous bi-component model catalysts consisting of small MnOx clusters supported on the Pd(111) single crystal surface. These metal oxide-on-metal ‘reverse’ model catalyst architectures were investigated via temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) techniques under ultra-high vacuum (UHV) conditions. Enhancement of CO2 activation was observed upon decreasing the size of MnOx nanoclusters by lowering the preparation temperature of the catalyst down to 85 K. Neither pristine Pd(111) single crystal surface nor thick (multilayer) MnOx overlayers on Pd(111) were not capable of activating CO2, while CO2 activation was detected at sub-monolayer (∼0.7 ML) MnOx coverages on Pd(111), in correlation with the interfacial character of the active sites, involving both MnOx and adjacent Pd atoms. © 2023 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
dc.description.provenanceMade available in DSpace on 2024-03-18T07:57:33Z (GMT). No. of bitstreams: 1 Interaction_of_CO2_with_MnOxPd(111)_reverse_model_catalytic_interfaces.pdf: 898386 bytes, checksum: c2244724ee8970fb823e67a38eb84c25 (MD5) Previous issue date: 2023-07-03en
dc.identifier.doi10.1002/cphc.202200787
dc.identifier.eissn1439-7641
dc.identifier.issn1439-4235
dc.identifier.urihttps://hdl.handle.net/11693/114861
dc.language.isoEnglish
dc.publisherWiley
dc.relation.isversionofhttps://dx.doi.org/10.1002/cphc.202200787
dc.source.titleChemPhysChem
dc.subjectCarbon dioxide activation
dc.subjectClusters
dc.subjectManganese oxides
dc.subjectNanomaterials
dc.titleInteraction of CO2 with MnOx/Pd(111) reverse model catalytic interfaces
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Photocatalytic_CO2_conversion_beyond_the_earth.pdf
Size:
800.07 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: