Study of exciton transfer in dense quantum dot nanocomposites
buir.contributor.author | Demir, Hilmi Volkan | |
buir.contributor.orcid | Demir, Hilmi Volkan|0000-0003-1793-112X | |
dc.citation.epage | 11394 | en_US |
dc.citation.issueNumber | 19 | en_US |
dc.citation.spage | 11387 | en_US |
dc.citation.volumeNumber | 6 | en_US |
dc.contributor.author | Guzelturk, B. | en_US |
dc.contributor.author | Hernandez-Martinez, P. L. | en_US |
dc.contributor.author | Sharma, V. K. | en_US |
dc.contributor.author | Coskun, Y. | en_US |
dc.contributor.author | Ibrahimova, V. | en_US |
dc.contributor.author | Tuncel, D. | en_US |
dc.contributor.author | Govorov, A. O. | en_US |
dc.contributor.author | Sun, X. W. | en_US |
dc.contributor.author | Xiong, Q. | en_US |
dc.contributor.author | Demir, Hilmi Volkan | en_US |
dc.date.accessioned | 2016-02-08T11:02:43Z | |
dc.date.available | 2016-02-08T11:02:43Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Department of Physics | en_US |
dc.department | Department of Chemistry | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.description.abstract | Nanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ∼70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:02:43Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1039/c4nr03456b | en_US |
dc.identifier.eissn | 2040-3372 | |
dc.identifier.issn | 2040-3364 | |
dc.identifier.uri | http://hdl.handle.net/11693/26640 | |
dc.language.iso | English | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1039/c4nr03456b | en_US |
dc.source.title | Nanoscale | en_US |
dc.subject | Exciton transfer | en_US |
dc.title | Study of exciton transfer in dense quantum dot nanocomposites | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Study of exciton transfer in dense quantum dot nanocomposites.pdf
- Size:
- 2.56 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version