Reordering methods for exploiting spatial and temporal localities in parallel sparse matrix-vector multiplication

buir.advisorAykanat, Cevdet
dc.contributor.authorAbuBaker, Nabil
dc.date.accessioned2016-09-09T12:41:56Z
dc.date.available2016-09-09T12:41:56Z
dc.date.copyright2016-08
dc.date.issued2016-08
dc.date.submitted2016-09-06
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (M.S.): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2016.en_US
dc.descriptionIncludes bibliographical references (leaves 50-53).en_US
dc.description.abstractSparse Matrix-Vector multiplication (SpMV) is a very important kernel operation for many scientific applications. For irregular sparse matrices, the SpMV operation suffers from poor cache performance due to the irregular accesses of the input vector entries. In this work, we propose row and column reordering methods based on Graph partitioning (GP) and Hypergraph partitioning (HP) in order to exploit spatial and temporal localities in accessing input vector entries by clustering rows/columns with a similar sparsity pattern close to each other. The proposed methods exploit spatial and temporal localities separately (using either rows or columns of the matrix in a GP or HP method), simultaneously (using both rows and column) and in a two-phased manner(using either rows or columns in each phase). We evaluate the validity of the proposed models on a 60- core Xeon Phi co-processor for a large set of sparse matrices arising from different applications. The performance results confirm the validity and the effectiveness of the proposed methods and models.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2016-09-09T12:41:56Z No. of bitstreams: 1 thesis.pdf: 1519484 bytes, checksum: 933c38629e5f3ec5f9000e11f491afc2 (MD5)en
dc.description.provenanceMade available in DSpace on 2016-09-09T12:41:56Z (GMT). No. of bitstreams: 1 thesis.pdf: 1519484 bytes, checksum: 933c38629e5f3ec5f9000e11f491afc2 (MD5) Previous issue date: 2016-09en
dc.description.statementofresponsibilityby Nabil AbuBaker.en_US
dc.embargo.release2018-09-01
dc.format.extentxiii, 53 leaves : illustrations, charts.en_US
dc.identifier.itemidB154023
dc.identifier.urihttp://hdl.handle.net/11693/32211
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSparse matrix-vector multiplicationen_US
dc.subjectGraph modelen_US
dc.subjectHypergraph modelen_US
dc.subjectSpatiotemporalen_US
dc.subjectSpatial localityen_US
dc.subjectTemporal localityen_US
dc.subjectXeon phien_US
dc.subjectMatrix reorderingen_US
dc.subjectParallel SpMVen_US
dc.titleReordering methods for exploiting spatial and temporal localities in parallel sparse matrix-vector multiplicationen_US
dc.title.alternativeParalel seyrek matris vektör çarpımında uzaysal ve zamansal yerelliği kullanmak için sıralma yöntemlerien_US
dc.typeThesisen_US
thesis.degree.disciplineComputer Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: