Reordering methods for exploiting spatial and temporal localities in parallel sparse matrix-vector multiplication

Available
The embargo period has ended, and this item is now available.

Date

2016-08

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
7
views
14
downloads

Series

Abstract

Sparse Matrix-Vector multiplication (SpMV) is a very important kernel operation for many scientific applications. For irregular sparse matrices, the SpMV operation suffers from poor cache performance due to the irregular accesses of the input vector entries. In this work, we propose row and column reordering methods based on Graph partitioning (GP) and Hypergraph partitioning (HP) in order to exploit spatial and temporal localities in accessing input vector entries by clustering rows/columns with a similar sparsity pattern close to each other. The proposed methods exploit spatial and temporal localities separately (using either rows or columns of the matrix in a GP or HP method), simultaneously (using both rows and column) and in a two-phased manner(using either rows or columns in each phase). We evaluate the validity of the proposed models on a 60- core Xeon Phi co-processor for a large set of sparse matrices arising from different applications. The performance results confirm the validity and the effectiveness of the proposed methods and models.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)