Spurious regression problem in Kalman Filter estimation of time varying parameter models

buir.advisorYiğit, Taner
dc.contributor.authorEroğlu, Burak Alparslan
dc.date.accessioned2016-01-08T20:05:48Z
dc.date.available2016-01-08T20:05:48Z
dc.date.issued2010
dc.descriptionAnkara : The Department of Economics, Bilkent University, 2010.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2010.en_US
dc.descriptionIncludes bibliographical references leaves 72-74.en_US
dc.description.abstractThis thesis provides a simulation based study on Kalman Filter estimation of time varying parameter models when nonstationary series are included in regression equation. In this study, we have performed several simulations in order to present the outcomes and ramifications of Kalman Filter estimation applied to time varying regression models in the presence of random walk series. As a consequence of these simulations, we demonstrate that Kalman Filter estimation cannot prevent the emergence of spurious regression in time varying parameter models. Furthermore, so as to detect the presence of spurious regression, we also propose a new method, which suggests penalizing Kalman Filter recursions with endogenously generated series. These series, which are created endogenously by utilizing Cochrane’s variance ratio statistic, are replaced by state evolution parameter Tt in transition equation of time varying parameter model. Consequently, Penalized Kalman Filter performs well in distinguishing nonsense relation from a true cointegrating regression.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T20:05:48Z (GMT). No. of bitstreams: 1 0006941.pdf: 1348422 bytes, checksum: 787b1cc0ef71b7b5f4a15a05c2c2cea4 (MD5)en
dc.description.statementofresponsibilityEroğlu, Burak Alparslanen_US
dc.format.extentxiv, 119 leaves, graphsen_US
dc.identifier.urihttp://hdl.handle.net/11693/17048
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpurious regressionen_US
dc.subjectCointegrationen_US
dc.subjectTime varying parameter modelsen_US
dc.subjectKalman Filteren_US
dc.subject.lccHB139 .E76 2010en_US
dc.subject.lcshEconometric models.en_US
dc.subject.lcshTime-series analysis--Data processing.en_US
dc.subject.lcshRegression analysis.en_US
dc.subject.lcshParameter estimation.en_US
dc.subject.lcshCointegration.en_US
dc.subject.lcshKalman filtering.en_US
dc.titleSpurious regression problem in Kalman Filter estimation of time varying parameter modelsen_US
dc.typeThesisen_US
thesis.degree.disciplineEconomics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMA (Master of Arts)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006941.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format