A new dominance rule to minimize total weighted tardiness with unequal release dates
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We present a new dominance rule by considering the time-dependent orderings between each pair of jobs for the single machine total weighted tardiness problem with release dates. The proposed dominance rule provides a sufficient condition for local optimality. Therefore, if any sequence violates the dominance rule then switching the violating jobs either lowers the total weighted tardiness or leaves it unchanged. We introduce an algorithm based on the dominance rule, which is compared to a number of competing heuristics for a set of randomly generated problems. Our computational results indicate that the proposed algorithm dominates the competing algorithms in all runs, therefore it can improve the upper bounding scheme in any enumerative algorithm. The proposed time-dependent local dominance rule is also implemented in two local search algorithms to guide these algorithms to the areas that will most likely contain the good solutions.