EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 135 (2001) 394412

www.elsevier.com/locate/dsw

Theory and Methodology

A new dominance rule to minimize total weighted tardiness with
unequal release dates

M. Selim Akturk *, Deniz Ozdemir

Department of Industrial Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey
Received 26 May 1998; accepted 7 November 2000

Abstract

We present a new dominance rule by considering the time-dependent orderings between each pair of jobs for the
single machine total weighted tardiness problem with release dates. The proposed dominance rule provides a sufficient
condition for local optimality. Therefore, if any sequence violates the dominance rule then switching the violating jobs
either lowers the total weighted tardiness or leaves it unchanged. We introduce an algorithm based on the dominance
rule, which is compared to a number of competing heuristics for a set of randomly generated problems. Our compu-
tational results indicate that the proposed algorithm dominates the competing algorithms in all runs, therefore it can
improve the upper bounding scheme in any enumerative algorithm. The proposed time-dependent local dominance rule
is also implemented in two local search algorithms to guide these algorithms to the areas that will most likely contain
the good solutions. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We propose a new dominance rule that provides a sufficient condition for local optimality for a single
machine total weighted tardiness problem with unequal release dates, 1|r;| > w;T;. Although customer
orders may not arrive simultaneously in real-life problems, to the best of our knowledge the authors
know of no published exact approach on the 1|,/ >~ w;T; problem. The problem may be stated as follows.
There are n independent jobs each has an integer processing time p;, a release date r;, a due date d;, and a
positive weight w;. Chu and Portmann [6] shown that the problem can be simplified by using corrected
due dates, i.e. if ; + p; > d, then d; takes the value r; + p;. Jobs will be processed without interruption on
a single machine that can handle only one job at a time. A tardiness penalty is incurred for each time unit
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if job j is completed after its due date d;, such that T; = max{0, (C; —d;)}, where C; and T; are the
completion time and the tardiness of job j, respectively. The objective is to find a schedule that minimizes
the total weighted tardiness of all jobs given that no job can start processing before its release date. For
convenience the jobs are arranged in an EDD indexing convention such that d; < d;, or d; =d; then
pi < pj, or di =d; and p; = p; then w; > w; or d; = d; and p; = p; and w; = w; then r; <r; for all i and j
such that i < j.

Rinnooy Kan [20] shows that total tardiness problem with unequal release dates, 1|r;| > 7; is NP-hard.
Lawler [15] shows that the total weighted tardiness problem, 1||>" w;7}, is strongly NP-hard, hence
unequal release dates problem, 1|r;| > w;T}, is also strongly NP-hard because at least two of its sub
problems are already known to be strongly NP-hard. Enumerative solution methods have been proposed
for both weighted and unweighted cases when all jobs are initially available. Emmons [9] derives several
dominance rules for 1| | > 7; problem that restrict the search for an optimal solution. Rachamadugu [19]
and Rinnooy Kan et al. [21] extended these results to 1| | > w;T;. Szwarc and Liu [24] present a two-stage
decomposition mechanism to 1| | w;T; problem when tardiness penalties are proportional to the pro-
cessing times. Recently, Akturk and Yildirim [1] proposed a new dominance rule and a lower bounding
scheme for 1| |3  w;T; problem that can be used in reducing the number of alternatives in any exact
approach.

All the optimizing approaches discussed above assume that the jobs have equal release dates, even
though the unequal release dates case has been considered for other optimality criteria. Chu [5] and
Dessouky and Deogun [8] give branch and bound (B&B) algorithms to minimize total flow time, 1|r;| }_ F},
whereas Bianco and Ricciardelli [3] and Hariri and Potts [12] consider the total weighted completion time
problem, 1|r;| >~ w;C;. Potts and Van Wassenhove [18] propose a B&B algorithm to minimize the weighted
number of late jobs. Erschler et al. [10] establish a dominance relationship within the set of possible se-
quences for 1 | »; problem independent of the optimality criterion to find a restricted set of schedules. Chu
[4] proves some dominance properties and provides a lower bound for 1|r;| 3~ 7; problem. A B&B algorithm
is then constructed using the previous results of Chu and Portmann [6] and problems with up to 30 jobs can
be solved for certain problem instances, even though computation requirements for larger problems tend to
limit this approach.

2. Dominance rule

The proposed dominance rule provides a sufficient condition for local optimality for the 1|r;| > w;T;
problem, and it generates schedules that cannot be improved by adjacent pairwise job interchanges. If any
sequence violates the proposed dominance rule, then switching violating jobs will either lowers the total
weighted tardiness or leaves it unchanged. We show that for each pair of jobs, i and j, that are adjacent in
an optimal schedule, there can be a critical value #; such that i precedes j if processing of this pair starts
earlier than #; and j precedes i if processing of this pair starts after ¢;. Therefore, the arrangement of two
adjacent jobs in an optimal schedule depends on their start time. To introduce the dominance rule, consider
schedules S| = 01ijQ, and S, = Q,jiQ, where O, and Q, are two disjoint subsequences of the remaining
n—2 jobs. Let ¢ be the completion time of Q;. The interchange function A;(¢) gives the cost of inter-
changing adjacent jobs i and j whose processing starts at time ¢, and A;(t) = f;;(¢) — fi:(?).

=

max{r;, r;, t} <d; — (p; + p;),
wit+pi+p —d), ri<tandd, — (p;+p;) <t<d —p,
fiy = wilrj+p; — 1), di—pi<t<ry
wi(r;+pi+p —d), t<di—p; andt<r,
wip;, max{r;, d; — p;} <t.
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There are five conditions for the computation of f;;(¢). For the first condition, both jobs i and j finish on
time, so it is indifferent to schedule either i or J first. In the second condition, job j arrives before time # and
job i will become tardy if it is not scheduled first. Therefore, the value of the function f;;(¢) is the increasing
function of the total weighted tardiness corresponding to the moving job i after job j, i.e. the weighted
tardiness of job i. In the third condition, job j arrives strictly after time ¢ and job i will be on time if it is
scheduled before job j. Otherwise, job i will be tardy if it is scheduled after job j taking into consideration
that there is an idle time on the machine before the beginning of job j, i.e. job i begins at time r; + p; instead
of ¢. In the fourth condition, if job i is scheduled before job j, then it can be finished exactly on time,
otherwise it will be tardy. Therefore, the value of the function f;;(¢) is equal to the weighted tardiness of job
i scheduled after job j that begins at time 7;. In the last condition, job j arrives before time ¢, and job i will be
tardy even if it is scheduled before job j. The value of the function f;;(¢) is the increasing of the total
weighted tardiness corresponding to the moving job i after job j, i.e. job i begins p; time units later. For the
cases 2-5, the formula does not take into account the potential decreasing of the tardiness of job j because it
will be considered in —f}; (7).

A;;(t) does not depend on how the jobs are arranged in O and Q, but depends on start time 7 of the pair
since we assume that when the order of the pair of adjacent jobs i and j are inverted this interchange does
not delay the beginning of the sequence Q,, and
o if Aj(f) <0, then j should precede i at time ¢;

e if Aj;(¢) > 0, then i should precede j at time #;
e if A;;(t) =0, then it is indifferent to schedule 7 or j first.

It is important to note that the dominance conditions derived for 1| |>" w;T; problem may not be
directly extended to the 1|r;|>_ w;T; problem. A global dominance for 1||) w;T; problem implies the
existence of an optimal sequence in which job i precedes job j is guaranteed and job i dominates job j for
every time point #. An immediate consequence of allowing different release times over the 1||> w;7;
problem is the need to examine the question of inserted idle time. To illustrate the role of inserted idle,
consider the following three-job example, for which the Gantt charts for three alternative schedules are
given in Fig. 1. Let (Job j|r;,p;,d;,w;) =(1]0,12,13,1), (2]0,14,14,1), and (3] 14,2,16,2). If we
directly implement dominance rules proposed by Emmons [9], Rinnooy Kan et al. [21], Rachamadugu
[19] or Akturk and Yildirim [1], job 1 dominates job 2 for any time ¢z > 0, i.e. global dominance. As
shown in Fig. 1(c), the only optimal solution is {2-3-1}, since these rules do not consider the impact of
inserted idle time on the final schedule. In Fig. 1(a), the sequence {1-2-3} corresponds to a non-delay
schedule, which never permits a delay via inserted idle time when the machine becomes available and
there is work waiting.

(@ 1 | 2 B T WI'=36
12 26 28
®) L e 2 | T Wr=16
12 14 16 30
© 2 3] 1 | S Wr=15
14 16 28

Fig. 1. Three alternative schedules for the three-job example.
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The dominance properties for 1|r;| > w;T; problem can be determined by looking at points where the
piecewise linear and continuous functions fj;(¢) and fj;(¢) intersect. When all of the possible cases are
studied, it can be seen that there are at most seven possible intersection points.

ty = [(wid; — w;d)) [ (w; — w))] = (B + py), (1)
6= dy = pi = pi(1 —wi/wy), )
ty, = d; — p; — pi(1 = w;/w), (3)
ty = wi/wiri+ pi+ py —d)) = (pi +p; — do), 4)
6, = [(w; — w)pi + wir; + wi(di — )]/ (wi + w)), (5)
15 =wi/wi(ry +pi+p;—d) — (pi+p; — dy), (6)
ty, = [(wi = w))p; +wiry +wy(d; = p))]/ (wi + w)). (7)

The intersection points are denoted as a breakpoint if they are in their specified intervals as shown
below. A breakpoint is a critical start time for each pair of adjacent jobs after which the ordering changes
direction such that if # < breakpoint, i precedes j (or j precedes i) and then j precedes i (or i precedes j). When
an intersection point precedes the arrival of one of the two considered jobs, then the release date of this job
is considered as a breakpoint. At intersection points t; and tf]., job i should precede job j, but job i becomes
available after the intersection point, hence r; is denoted as a breakpoint. Similarly, 7; is denoted as a
breakpoint instead of tf’j and tZ, As a result, interchanging two adjacent jobs using the proposed local
dominance rule will not delay the earliest scheduling date for the sequence Q, as indicated above.

o ¢, will be a breakpoint if max{d; — (p: + p;),ri,r;} < t}; < min{d; — p;,d; — p;},

o #; will be a breakpoint if max{d; — p;,d; — (pi + p;), r;} < 1, < d; = p,

o ¢, will be a breakpoint if max{d; — p;,r;} <1, < d; — p;,

o r; will be a breakpoint if either d; — (p: + p;) < tg. < min{d; — p;,r;} ord; — p; < tfj <r,
o r; will be a breakpoint if either d; — (p; + p;) < £, < min{d; — p;, r;} or d; — p; < t};<r;.

Throughout the paper, we also use the following definitions. i conditionally precedes j, (i < j) if there is
at least one breakpoint between the pair of jobs such that the order of jobs depends on the start time of this
pair and changes in two sides of that breakpoint. i unconditionally precedes j, (i — j) the ordering does not
change, i.e. i always precedes j when they are adjacent, but this does not imply that an optimal sequence
exists in which i precedes ;.

In order to derive a new dominance rule, we analyze 31 exhaustive cases. Detailed proofs of these cases
are not included here due to space limitations but can be obtained from the first author [2]. To clarify the
background behind the general rule, the following three different cases are investigated as an example. In
the first case as it can be seen in Fig. 2 there is a single intersection point, #}. Furthermore, f;;(¢) > f;:(t) for
t <1, and f;(t) > f;;(t) afterwards. But the intersection point occurs before both jobs become available, i.e.
t§ < rj, hence r; becomes a breakpoint as discussed in Proposition 1.

Proposition 1. If pw; > pw;, r; < d; — (pi + p;) < r; < min{d; — p;,d; — p;} and (w; — w;)(r; + pi + p;) =
wid; — wid;, then i < jif t <r; and j < i, afterwards.
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W, (r+p,+p;-d,)

time
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Fig. 2. Illustration of Proposition 1.

Proof. Before r;, we should schedule job i. As defined earlier A;(¢) = f;;(f) — f;(¢). If we let ¢t = r; then
A(t) = wi(rj + pi + p; — di) — wy(r; + pi + p; — d;) <O since (w; — w;)(r; + pi + p;) = wyd; — widj, so j < i at
t =r;. As pyw; = pyw; for t = r;, f;(t) > f;;(¢) afterwards. Consequently, A;(f) <0 and j <i. O

In the second case, there is no breakpoint, which means job j unconditionally precedes job i as shown in
Fig. 3. If we can show that A;;(¢) <0 Ve, i.e. f;;(¢) < f5:(¢) for every ¢, then j — i as stated below.

Proposition 2. If r;<d; — (pi + p;) <r; < d; — p;, wi(r; + pi + p; — d;) < pjw; < pow;, and (w; — w;)(r; + pit+
D;) = w;d; — wid;, then j — i for every t.

Proof. The maximum value of f;;(f) = pyw; and the minimum value of f;(t) = w;(ri+pi+p; —d;). If
Wj(l",' +p, JFP/ — dj) gij[ gp[wj, then f},’([) = ﬁj(t) Only if f)[(l",') = ﬁj(?’[), 1.e. Wj(}’[ +p, +pj - dj) =

w;(r; + pi + p; — d;). This inequality is equivalent to (w; — w;)(r; + pi + p;) = w;d; — wid;, so f;(t) = f;(¢) for
every ¢ leading to j —i. O

g Wj .7 T f i (t)
Y s (o
W(ripitpy-dy)f - .
| | i time
&) d:p;  d;p;

Fig. 3. Illustration of Proposition 2.
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Wj (ri +Pi+Pj‘dj) ffffffffffffffff

I I I ! ! time

Fig. 4. Illustration of Proposition 3.

The last case is similar to previous one except d; — p; is always less than d; — p; and the non-constant
segment of fj;(¢) intersects with the constant segment of f;;(¢). As it can be seen from Fig. 4, this difference
results in two intersection points ¢ and #2. Since # < r;, r; is also denoted as a breakpoint in addition to tfj
The following proposition can be used to specify the order of jobs at time ¢.

Pl‘OpOSitiOll 3. I_ij(r,' +pl +pj — dj) < ijl < pin, pj(W, — W/) > Wj(dl — dj) and rj < dj — (p,' +pj) < ri <
d; — p; < d; — p; then there are two breakpoints r; and t[.zj, and j < ifor t<r, i< jforr<t< tfj and j < i,
afterwards.

Proof. Only job j is available until job i arrives at time r;. After r;, there is a breakpoint tiz/ if the non-constant
segment of f};(¢) intersects with the constant segment of f;;(¢). This is the case if wip; = w;(¢, + pi + p; — d))
while d; —p; <t} <d;—p;. This leads to the condition of pw;>pw; for #;<d,—p; and
pi(w; —w;) <wy(d; — ;) for §; > d; — p;. If d; — p; <t then j < i since A;(t) = pyw; — pw; < 0. O

After analyzing all possible cases, we show that there are certain time points, called breakpoints, in
which the ordering might change for adjacent jobs. As a result, we can state the following general rule,
which generates schedules that cannot be strictly improved by one adjacent job interchange.

General Rule

IF () max{d; — pi.d; = (p; + p),7;} < 1t;; <d; = p;
THEN(]) IF(z) rp <r;
THEN(Q) J=i for t <r,
i< jforr<t<t,
j=ifort> tfj
ELSEy i < j for t < 1,
j=ifort>¢,
ENDIF,,,
ELSE(I) IF(3) max{dj —Djs V,-} < Z‘Z < d; — Di
THEN) IF ) max{d; — (p; + p)),r:} < t;;<d; —p;
THEN(4) IF<5) rp <r;
THENs) j <ifort <r,



400 M.S. Akturk, D. Ozdemir | European Journal of Operational Research 135 (2001) 394412
i < j for riététl,lj,
j=iford <1<,
i< jfort>1t),
ELSEs i < j for 1<,
Jj=ifor g, <t<1,
i<jfore>d,
ENDIF s,
ELSE(4) IF(G) r <y
THEN(G) i<j fort < i,
j < ifor rjgtgtfj,
i< jforet>1,
ELSE) j < i for 1<t
i< jfort>t,
ENDIF
ENDIF 4
ELSEq) IF () max{r,,r;,d; — (pi + p;)} <t;< min{d; — pi, d; — p;}
THEN() IFw) ri<d; — (pi+pj) <71
THEN) i < j for t <7,
Jj=iforr<t<t,
i<jfort>tl,
ELSE(g) IF(g) rp <r;
THEN(y) j <ifor ¢t <,
i< jforr<t<t),
j=ifort>t,
ELSE) i < j for 1 <1,
j=ifort>d,
ENDIF
ENDIF
ELSE(; IF(0) EITHER d; — (pi —I—pj) < tg. < min{d; — p;, rj} OR d, —p < t7.7j <
THEN(lo) i<j for ¢t < i,
j=ifort=r,
ELSE(]O) IF(]]) EITHER d,' — (p,‘ +pj) < t;; < mln{dj _pj)ri} OR dj —Dj < tlsj gl"l'
THEN |, Jj=<1i for t < r,
i <j(fc;r t>=r,
ELSE(“) IF(lz) Fi gr,
THEN(lz) i—j
ENDIF 5
ENDIF 11,10,7,3,1

As we discussed before, there are five breakpoints, namely t}i, tf/., tf/., r;, and r;. Let U denote the set of all
jobs, ¥ the set of pairs (i, ) for which A;;(¢) has at least one breakpoint #;, i, j € V. We know that both jobs
i and j should be available before a breakpoint tl’.j. > max{r;,r;} for k =1,2,3 so that the largest of these
breakpoints is equal to ¢, = max(,-},-)ey{t}j, tizj, tfj} The following proposition can be used quite effectively to
find an optimal sequence for the remaining jobs on hand after time ¢,.

Proposition 4. If't > t,, then the weighted shortest processing time (WSPT) rule gives an optimal sequence
for the remaining unscheduled jobs.
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Proof. ¢, is the last breakpoint for any pair of jobs i, j on the time scale. For every job pair (i, /), there is
either a breakpoint, #;, or unconditional ordering (i — j). The WSPT rule holds for i — j. In the proposed
local dominance rule, if both jobs are tardy, that means the current time ¢ > max{tf}} for k =1,2,3, then
the adjacent jobs will be sequenced in non-increasing order of w;/p;. If there is a breakpoint then for ¢ > ¢
the job having higher w;/p; is scheduled first due to the proposed local dominance rule, so the WSPT order
again holds. For ¢ > ¢; consider a job i which conflicts with the WSPT rule, then we can have a better
schedule by making adjacent job interchanges which either lowers the total weighted tardiness value or
leaves it unchanged. If we do the same thing for all of the remaining jobs, we get the WSPT sequence. [

It is a well-known result that the WSPT rule gives an optimal sequence for the 1| | Y~ w;T; problem when
either all due dates are zero or all jobs are tardy, i.e. ¢ > max;cy{d; — p;}. The problem reduces to total
weighted completion time problem, 1| | >~ w;C;, which is known to be solved optimally by the WSPT rule,
in which jobs are sequenced in non-increasing order of w;/p;,. We know that ¢, < max;cy{d; — p;}, so we
enlarge the region for which the 1|r;| >~ w;T; problem can be solved optimally by the WSPT rule as dem-
onstrated on a set of randomly generated problems in Section 5.

3. Algorithm

Based on the computational complexity results of 1] | >~ w;T; and 1|rj| >_ 7; problems by Lawler [15] and
Rinnooy Kan [20], it can be easily deduced that 1|r;| > w;T; problem is also strongly NP-hard. Since the
implicit enumerative algorithms may require considerable computer resources both in terms of computa-
tion times and memory, it is important to have a heuristic that provides a reasonably good schedule with
reasonable computational effort. Therefore, a number of heuristics have been developed in the literature as
summarized in Table 1. MODD, WPD, WSPT, and WDD are examples of static dispatching rules, whereas
ATC, COVERT, X-RM, and KZRM are dynamic ones. For the static dispatching rules, the job priorities
do not change over time while priorities might change over time for the dynamic dispatching rules. A more
detailed discussion on heuristic approaches can be found in Morton and Pentico [16].

Table 1
A set of competing algorithms
Rule Definition Rank and priority index
MODD Earliest modified due date min{max{d;,t + p;} }
. ; - 0,d; —t—p;
ATC Apparent tardiness cost max m; = { Wi exp (M) }
P kp
B 0,r,— ¢
X-RM X-dispatch ATC max {n,- <1 — M) }
p
COVERT Weighted cost over time max { — max {0, 1- w] }
Dj
WPD Weighted processing due date { Ld }
WSPT Weighted shortest processing time max { % }
pPj
WDD Weighted due date max { % }
J

KZRM Kanet and Zhou approach to ATC ATC with a look-ahead mechanism
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The apparent tardiness cost (ATC) is a composite dispatching rule that combines the WSPT rule and the
minimum slack rule. Under the ATC rule, jobs are scheduled one at a time; the job with the highest ranking
index is then selected to be processed next. The ranking index is a function of the time ¢ at which the
machine became free as well as p;, w;, and d; of the remaining jobs. Vepsalainen and Morton [25] have
shown that the ATC rule is superior to other sequencing heuristics for the 1| | >~ w;7; problem. It trades off
job’s urgency (slack) against machine utilization, but due to the more complex weighted criterion, an
additional look ahead parameter is needed to assimilate the competing jobs which have different weights.
Intuitively, the exponential look ahead works by ensuring timely completion of short jobs (steep increase of
priority close to due date), and by extending the look ahead far enough to prevent long tardy jobs from
overshadowing clusters of shorter jobs. We set the look-ahead parameter k at 2 as suggested in [16], and p is
the average processing time of remaining unscheduled jobs at time z.

According to Kanet [13], schedules with inserted idleness appear to have better best case behavior than
non-delayed schedules as already shown in Fig. 1. He concluded that non-delay schedules may produce
reasonably good performance but rarely provide a schedule which is optimal. Morton and Ramnath [17]
modify the ATC rule to allow inserted idleness, which is named the X-RM rule. The X-RM rule can be
defined as follows. Whenever a resource is idle, assign it a job which is either available at that time or will be
available in the minimum processing time of any job that is currently available. The procedure starts with
calculating ATC priorities, 7;(f). These priorities are multiplied with 1 — [(B max{0,r; —¢})/p], hence a
priority correction is done to reduce priority of late arriving critical jobs. The parameter B is between 1.6-2,
whereas p can be either average processing time, p, or minimum processing time, pni,, as suggested in [16]
and [17], respectively. In our study, we compared four different combinations of B and p values such that
X-RM I=(1.6,p), X-RM II1=(2,p), X-RM Il = (1.6, pin), and X-RM IV = (2, prin)-

The KZRM is a local search heuristic that combines the ATC rule and the decision theory approach of
Kanet and Zhou [14]. The decision theory approach defines the alternative courses of action at each de-
cision juncture, evaluate the consequences of each alternative according to a given criterion, and choose the
best alternative. In the KZRM rule, we first calculate ATC priorities for all available jobs and generate all
possible scenarios putting one of the available jobs first, and ordering the remaining ones by their ATC
priorities. After making valuation of each scenario by calculating the objective function, i.e. F; =) w;T;
where job j is scheduled first, we choose the scenario with the minimum F; value, and schedule job j. We
perform this procedure iteratively until all jobs are scheduled. Therefore, the KZRM rule can be also called
a filtered beam search with a beam size of one.

We have proved that the dominance properties provide a sufficient condition for local optimality. Now,
we introduce an algorithm based upon the dominance rule that can be used to improve the total weighted
tardiness criterion of any sequence S by making necessary interchanges. Let seq[k] denote index of the job
in the kth position in the given sequence S and /[k] denote the idle time inserted before kth position in the
given sequence S, such that /[k] = max{0, ryqu) — Csqi—1}- The algorithm can be summarized as follows:

Set k=1and t=0.
While £ <n—1 do begin
Set i = seq[k] and j = seq[k + 1]
IFy) i < j THEN,
IF(Z) l’IlaX{d,' —p,',dj - (pi ‘|'pj)7 Vj} < ll-zj < d] —Djs and l‘l-zj <t THEN(z)
t =t — Pseqi—1) — I[k], recalculate 7[k], change order of i and j, set k = k — 1
ELSE(Q) IF(3) max{dj —Djs I”,-} < l‘?j < d; — Di THEN(3)
IF 4y max{d; — (pi +p;), 7, 7;} < t;; < min{d; — p;,d; — p;}, and #}; < ¢ < t;, THEN,
t =t — Pseqi—1] — I[k], recalculate 7/[k], change order of i and j, set k =k — 1
ELSEy) IFs) r; <1<t and either ¢, < max{d, — (p: + p;),ri,r;} or
i! > min{d, - p;,d; — p;} THEN5, |
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t =t — pseqi—1) — I[k], recalculate 7[k], change order of i and j, set k =k — 1
ELSEs IF( max{d, — (p; + p;),ri,r;} < ;< min{d, — p,d; — p;} THEN g
IF¢) ri<d; — (pi+p;) <r;and r/<t<t THEN 7
t =t — Peqi—1) — I[k], recalculate I[k], change order ofiand j, set k =k — 1
ELSE(;) IFs) ), < t THEN,
t =t — Pseqik—1] — I[k], recalculate 7[k], change order of i and j, set k = k — 1
ELSE, IF () ¢ > r; and either d; — (p: + p;) < £ < min{d; — p;,r;} or d; — p; < 1}, <r; THEN
t =t — Pseqi—1) — I[k], recalculate 7[k], change order of i and j, set k = k — 1
ELSE(Q) t=t+p and k =k + 1.
ENDIF
ELSE;, IF 4 max{d —pid; — (pi+py), 1y} <t < d;j—p;, and r; <t < £, THEN
t =1 — Peqi—1) — I[k], recalculate 1]k, change order of i and j, set k =k — 1
ELSE (10) 1F (11) max{d pj,f‘,} <l <d; — —Di THEN 11)
IF 1) maX{d_ (pi +pj)sri, 75} < th<dj—pyr; <t and either 7 <1}, or 1 >, THEN ;)
t =1t — Pseqii—1) — I[K], recalculate I[k], change order of i and j, Seth=k—1
ELSE 1y IF(3) ¢ > ¢} and either ¢, < max{d; — (p: + p;), 7, 7;} or
t1 >m1n{d p,,d pj} THEN 33
t =1t — Pseqi—1) — I[K], recalculate I[k], change order of i and j, set k =k — 1
ELSE15) IF 14y max{d, — (p; +p;),ri,r;} < tU < min{d; — pi,d; — p;} THEN 14
IF s 7, d (pi +p;) < rjand ¢ > 1}, THEN5)
t =1t — Pseqi—1] — 1[K], recalculate 1 ], change order of i and j, set k =k — 1
ELSE (15) IF (16) r<t< tilj and 7 <t THEN(16)
t=1t— pseqk 1) — I[k], recalculate I[k], change order of i and j, set k =k — 1
ELSE ) IF17) r; <t and either d; — (p; + p;) < t < min{d; — p;,r;} or d; — p; < t5 <r; THEN 7
t =t — Pseqi—1] — I[k], recalculate 7[k], change order of i and j, set k = k — 1
ELSE(W) t=t+p and k=k+1
ENDIF 1,
ENDIF (16,15,14,13,12,11,10,1)
end.

Let us consider the following 10-job example to explain the proposed algorithm. In this example jobs
are initially scheduled by the X-RM II rule. The initial ordering is given in Table 2 along with the se-
quence, S, release date, r;, processing time, p;, weight, w;, due date, d;, starting time, ¢, and weighted
tardiness, WT, of each job j. The final schedule after implementing the proposed algorithm on the
schedule given by the X-RM II rule is also given in Table 2. The algorithm works as follows: we start
from the first job of the given sequence. For each adjacent job pair, we compare the start time of this pair
with precedence relations given by the proposed dominance rule. Up to ¢t = 10, the sequence generated by
the X-RM 1II rule does not conflict with the dominance rule. But job 7 in the 4th position violates the
dominance rule when compared to job 5 in the 5th position at time ¢ = 10. The breakpoint tgj is equal to
18.11, which is greater than ¢ = 10, that means 5 < 7 at time ¢ = 10, so an interchange should be made.
There is no idle time before job 7 so I[3] = 0, then 7 is set to 10 — pyq3 = 6 and k = k — 1 = 3. Since the
job in 4th position is changed, algorithm returns one step back to check the dominance rule between the
jobs at position k and k£ + 1, i.e. jobs 2 and 5. We proceed on, another interchange is made at ¢ = 23
between jobs 9 and 6, then between jobs 8 and 6, and finally between jobs 10 and 4. Notice that, after all
necessary interchanges are performed on the sequence generated by the X-RM 1I rule, the total weighted
tardiness dropped from 61 to 21 giving an improvement of (61 —21)/61 = 66%. For this example, the
optimum solution is also equal to 21.
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Table 2
A numerical example
S X-RM II rule Dominance rule
Jobs 7 D w; d; t WT Jobs t WT
1 1 1 2 3 10 1 0 1 1 0
2 3 5 1 6 15 5 0 3 5 0
3 2 6 4 4 11 6 0 2 6 0
4 7 9 5 9 28 10 0 5 10 0
5 5 7 6 2 24 15 0 7 16 0
6 8 21 2 7 30 21 0 6 21 5
7 9 21 4 8 36 23 0 8 28 0
8 6 18 7 5 27 27 35 9 30 0
9 10 18 10 9 49 34 0 4 34 16
10 4 11 5 1 23 44 26 10 39 0

N
3]
—_

Total weighted tardiness

4. Computational results

We tested the proposed algorithm on a set of randomly generated problems on a Sun-Sparc 1000E server
using Sun Pascal. The proposed algorithm was compared with a number of heuristics on problems with 50,
100, and 150 jobs that were generated as follows. For each job j, an integer processing time p; and an integer
weight w; were generated from two uniform distributions [1, 10] and [1, 100] to create low or high variation,
respectively. Instead of finding due dates directly, we generated slack times between due dates and earliest
completion times, i.e. d; — (r; + p;), from a uniform distribution between 0 and f 37", p;, whereas release
dates, r;, are generated from a uniform distribution ranging from 0 to o Z;.'Zl p; as in Chu [4]. As sum-
marized in Table 3, a total of 144 example sets were considered and 20 replications were taken for each
combination, giving 2880 randomly generated runs.

We have claimed that if any sequence violates the dominance rule, then the proposed algorithm either
lowers the weighted tardiness or leaves it unchanged. In order to show the efficiency of the proposed ap-
proach, a number of heuristics were implemented on the same problem sets. The proposed algorithm starts
from the first job of the given sequence and proceed on as outlined in Section 3. The results, which are
averaged over 960 runs for each heuristic, are tabulated in Tables 4-6 for 50, 100, and 150 jobs, respectively.
For each heuristic, the average weighted tardiness before and after implementing the proposed algorithm
along with the average improvement, (improv), the average real time in centiseconds used for the heuristic
and algorithm, and the average number of interchanges, (interch), are summarized. Although the real time
depended on the utilization of system when the measurements were taken, it was a good indicator for the
computational requirements, since the CPU times were so small that we could not measure them accurately.
In general, the actual CPU time is considerably smaller than the real time. Finally, we performed a paired
t-test for the difference between the total weighted tardiness values given by the heuristic before and

Table 3

Experimental design
Factors # of levels Settings
Number of jobs 3 50, 100, 150
Processing time variability 2 [1, 10], [1, 100]
Weight variability 2 [1, 10], [1, 100]
Release date range, o 4 0.0, 0.5, 1.0, 1.5
Due date range, 3 0.05, 0.25, 0.5
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Heuristic >owT; Improv (%) Real time Interch t-test value
Before After Before After
MODD 147938 143623 3.9 2.25 1.23 7.42 11.47
ATC 98061 96994 7.6 2.52 1.11 12.12 13.71
X-RM 1 98646 97359 9.6 4.49 1.04 12.04 12.53
X-RM 11 98232 97027 9.3 3.83 1.30 11.98 13.59
X-RM III 98242 96975 10.5 3.99 1.26 12.30 12.66
X-RM 1V 97706 96540 9.4 3.94 1.21 12.10 12.76
COVERT 100056 99656 2.0 2.67 0.95 1.68 11.77
WPD 111425 100545 30.8 2.09 2.05 55.17 13.53
WSPT 111480 100319 32.1 1.95 2.08 49.06 11.05
WDD 133086 120018 20.5 1.73 1.66 36.44 10.42
KZRM 96142 96059 0.3 820.10 1.08 0.93 7.70
Table 5
Computational results for n = 100
Heuristic >owT; Improv (%) Real time Interch t-test value
Before After Before After
MODD 626526 612541 2.5 8.19 4.19 22.64 12.89
ATC 410803 408156 6.0 9.94 3.26 29.47 15.29
X-RM 1 414423 411303 6.5 15.98 3.72 29.94 14.73
X-RM 11 413506 410406 6.7 15.80 3.67 29.51 14.43
X-RM 111 412953 410056 6.0 15.62 3.17 29.47 15.28
X-RM 1V 412131 409261 5.8 15.31 3.37 29.48 15.39
COVERT 417285 416191 1.3 8.81 3.83 3.79 12.98
WPD 485685 436516 313 7.16 591 216.76 13.86
WSPT 474567 428902 32.0 6.99 6.10 181.87 10.62
WDD 600836 539149 18.3 7.33 5.54 133.36 10.96
KZRM 405050 404791 0.7 12309.86 3.27 2.43 10.04
Table 6
Computational results for n = 150
Heuristic 2w, Tmprov (%) Real time Interch t-test value
Before After Before After
MODD 1390614 1366306 1.9 18.54 7.8 42.13 13.23
ATC 909104 904634 4.7 21.91 7.76 48.53 15.06
X-RM 1 935756 930374 5.4 37.06 7.72 48.50 12.26
X-RM 11 934892 929421 5.6 36.66 7.31 48.16 12.20
X-RM III 914631 909759 6.8 37.43 7.52 48.39 15.00
X-RM 1V 913304 908522 5.5 37.39 7.30 47.85 14.94
COVERT 919108 917518 1.1 20.69 7.59 5.64 13.22
WPD 1091802 975884 312 14.97 13.15 466.43 13.01
WSPT 1050406 950104 31.4 15.29 12.49 380.16 10.15
WDD 1373981 1250450 20 15.43 10.75 243.79 10.69
KZRM 895869 895406 0.3 65801.26 9.35 4.21 11.32

after applying the proposed algorithm for each run, and these #-test values are reported in the last column.
A large #-test value indicates that there is a significant difference between the total weighted tardiness values.
The average improvement for each run is found as follows: improv = {(F(S") — F(SP%))/F(S")} x 100,
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if F(S") # 0, and zero otherwise, where F(S") is the total weighted tardiness value obtained by the heuristic
and F(SPF) is the total weighted tardiness obtained by the algorithm, which takes the sequence generated by
the heuristic as an input.

Among the competing rules, a local search-based KZRM rule performs better than the other rules,
although it requires considerably higher computational effort than others. The static MODD, WDD, WPD,
and WSPT rules perform poorly in a dynamic environment since they do not consider availability of jobs
while sequencing them. Furthermore, quite large ¢-test values on the average improvement indicate that the
proposed algorithm not only dominates the competing rules but also provides a significant improvement on
all rules, and the amount of improvement is notable at 99% confidence level for all heuristics. When we
analyze the individual heuristics, we perform 12.1 pairwise interchanges on the average for the X-RM IV
rule and improve the results by 9.4% for 50 jobs. On the other hand, the average number of interchanges
increases to 55.17 for the WPD rule with a 30.8% improvement. The amount of improvement over the
KZRM rule might seem a small percentage, but considering the fact that KZRM rule requires 65801.26
centiseconds on the average to find a schedule for 150 jobs, whereas our proposed algorithm can still
improve it by 0.3% after spending only 9.35 centiseconds, which is 1.4 x 10~ times less than the time
required to find an initial schedule. Moreover, we discuss the effect of the range of processing times and
weights on the two best rules of X-RM IV and KZRM for 100 jobs case as an example in Table 7. These
results are averaged over 240 randomly generated runs, and they indicate the robustness of the proposed
algorithm to changing conditions of the experimental factors.

We already showed how the proposed local dominance rule can be used to improve a sequence given by
a dispatching rule. The obvious disadvantage of dispatching rules is that the solutions generated by these
methods may be far from the optimum. This problem can be tackled by local search methods. Crauwels
et al. [7] present several local search heuristics for the 1| | w;T; problem. They introduce a new binary
encoding scheme to represent solutions, together with a heuristic to decode the binary representations into
actual sequences. This binary encoding scheme is also compared to the usual permutation representation
for descent, simulated annealing, threshold accepting, tabu search and genetic algorithms on a large set of
problems. We now demonstrate how the proposed dominance rule can be implemented in a local search
algorithm, namely on the greedy randomized adaptive search procedure (GRASP) by Feo and Resende [11]
and the problem space genetic algorithm (PSGA) by Storer et al. [22].

The GRASP is an iterative process that provides a solution to the problem at the end of each iteration
and the final solution is the best one that is obtained during the search as discussed in [11]. GRASP consists
of two phases: in the construction phase GRASP builds a feasible schedule iteratively with respect to a
greedy function by constructing a restricted candidate list (RCL) and select one job from this list randomly.
RCL = {j : a; > a} where o; is the ratio of greedy function score of job j to the highest score obtained at

Table 7
Detailed computational results for n = 100
Heuristic >owiT; Improv (%)
Before After
X-RM IV Wiows Plow 17708 17593 5.1
Wiows Phigh 156515 155473 5.1
Whighs Plow 149672 148689 6.8
Whigh»> Phigh 1324627 1315287 6.3
KZRM Wiows Plow 17411 17402 0.4
Wiows Phigh 153878 153780 1.0
Whighs Plow 148689 147065 0.6

Whighs Phigh 1315287 1300914 0.9
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that step, and « is a predetermined ratio parameter. We choose X-RM 1V as the greedy function since it is
the best dispatching rule that takes into account the inserted idle times due to our computational results.
There are two different parameters that should be selected. We must decide the number of jobs that enters
to the RCL at each iteration of the construction phase, hence we set o = 0.5 or 0.8. The second phase is the
iterative improvement procedure that tries to locally optimize the schedule obtained from the construction
phase, in which we use our algorithm to guarantee a local optimality. Another parameter to be decided is
stopping criterion and we iterate the procedure either 100 or 250 times to construct the “best” schedule. The
basic outline of the GRASP algorithm is given below. Let n be the number of jobs and L be the maximum
number of iterations.

Step 0 [Initialization] Set z = 0.
Step 1 [Phase I] Set k£ = 0.
Step 2 Calculate the X-RM IV ranking index for each job j that can be scheduled at iteration k, denoted
as 7;(k).
Step 3 [Construct the greedy randomized schedule] Find the job / that has the highest ranking index at
iteration k. Set RCL(k) = {j : m;(k)/m,(k) = o; = «}. Select a job randomly from RCL(k). If k <n — 1
then set k = k+ 1 and go to Step 2.
Step 4 [Phase I1: Local optimization] Calculate the maximum breakpoint, #; = max e, {t};, 2, £, }. Apply
the proposed dominance rule to find a local minimum in a forward procedure starting from the first job
of the given sequence and proceed on as outlined in Section 3. At any iteration, if # > ¢, then order the
remaining unscheduled jobs according to the WSPT rule. If the current solution is better than the best
solution found until now then update the best solution. Set z =z + 1. If z < L then go to Step 1, else stop
and report the best solution.

In Table 8, we summarize the number of times the value of a heuristic outperforms others or is one of the
best ones before and after implementing the algorithm over 960 runs. Notice that more than one heuristic
can have the “best” value for a certain run, if there is a tie. Slight changes can occur in the table when
GRASP is iterated 250 times as stated in parentheses. It can be seen that before applying the proposed
dominance rule GRASP works better than the X-RM IV rule for 50 jobs, such that X-RM IV outperforms
other heuristics 138 times while GRASP (o = 0.8, 250 iterations) has the best results for 186 times. But after
implementing the dominance rule, X-RM IV gives better results in a significantly less computational time.

Table 8

Number of best results
Heuristic # OF JOBS =50 # OF JOBS = 100 # OF JOBS =150

Before After Before After Before After

MODD iter.# = 100 (iter.# = 250) 97 100 98 100 93 99
X-RM 1 iter# = 100 (iter.# = 250) 140 330 156 277 136 252 (251)
X-RM I iter.# = 100 (iter.# = 250 131 323 155 284 123 238 (237)
X-RM III iter.# = 100 (iter.# = 250) 147 366 183 293 167 320 (319)
X-RM 1V iter.# = 100 (iter.# = 250) 138 385 159 299 149 288 (287)
ATC iter.# = 100 (iter.# = 250) 82 269 86 220 73 199 (198)
COVERT iter.# = 100 (iter.# = 250) 100 (99) 134 (132) 95 123 93 118
WPD iter.# = 100 (iter.# = 250) 6 102 11 80 22 73
WSPT iter.# = 100 (iter.# = 250) 5 147 6 101 14 87
WDD iter.# = 100 (iter.# = 250) 9 41 11 38 9 26
KZRM iter # = 100 (iter.# = 250) 324 (323) 457 (456) 224 (223) 546 (542) 233 606
GRASP oa=0.5 a=0.8 a=0.5 o=0.8 a=0.5 =028
iter.# = 100 153 183 103 117 106 112

iter # = 250 154 186 103 121 105 112




408 M.S. Akturk, D. Ozdemir | European Journal of Operational Research 135 (2001) 394412

For n = 150, the average real time consumed for improving X-RM 1V is 7.3 centiseconds while the min-
imum computation time for GRASP is 9379.67 centiseconds for o = 0.5 with 100 iterations. When we
compare GRASP with the KZRM rule for n = 50, GRASP with o = 0.5 used 947.46 centiseconds for 100
iterations and 2371.92 centiseconds for 250 iterations, while the KZRM rule gave 324 best results in 820.1
centiseconds and applying the dominance rule increased the number of best results to 457 in 1 centisecond
on the average. In sum, our computational results show that a problem guided heuristic such as X-RM or
KZRM supported by our proposed dominance rule to ensure local optimality perform better than a
random search-based GRASP algorithm in terms of computational time requirements as well as total
weighted tardiness.

PSGA have been used successfully in the past on several scheduling problems by Storer et al. [23]. At the
heart of a PSGA is a constructive heuristic which maps a problem instance to a sequence. We again use the
X-RM 1V augmented with the proposed local dominance rule as the constructive heuristic. A PSGA uses
the perturbation vector as the encoding of a solution (or chromosome). Note that a perturbation vector o
may be decoded into a sequence by applying the constructive heuristic. Given any sequence, the objective
function (total weighted tardiness) can be calculated. Unlike many applications of genetic algorithms to
sequencing problems, standard crossover operators may be applied under this encoding. Once a new
generation of perturbation vectors has been created, each element of each vector in the new generation may
be mutated. The probability of mutating an element is given by the mutation probability tuning parameter
‘MUTPROB’. If selected for mutation, the element is replaced by a newly generated uniform U(—6, 6)
random perturbation.

A brief outline of the PSGA with the proposed local dominance rule (LDR) is given below. The
maximum number of generations (iterations) and the number of initial population of perturbation vectors,
L, are set to 200 and 50, respectively. Clearly more iterations will yield better results, but with diminishing
returns. 200 generations seems to balance performance and computation time in a reasonable way. Fur-
thermore, we set MUTPROB =0.1 and 6 = 0.5 in all experiments.

Step 0 [Initialization] Set z = 0.

Step 1 Randomly generate a perturbation vector ¢ of size n from the uniform distribution of U(—0, 0).

Set k£ = 0.

Step 2 Calculate the X-RM IV ranking index for each eligible job j that can be scheduled at iteration k,

denoted as ;(k).

Step 3 The X-RM 1V priorities 7;(k) are normalized into the interval [0,1] yielding a; as follows:

Let 7min(k) = min; 7;(k) and 7.« (k) = max; 7;(k).
Then a;(k) = (m;(k) — Timin (k) / (Timax (k) — Tomin ().

Step 4 Perturbations are then added to the normalized priorities, and the job with the highest perturbed

normalized priority a;(k) + ¢, is scheduled next. Set k =k + 1. If £ < n then go to Step 2.

Step 5 Apply the proposed local dominance rule as discussed in Section 3. At any iteration, if
t > t; = max, ey {1};, £, 2;;} then order the remaining unscheduled jobs according to the WSPT rule. Cal-

culate total weighted tardiness, and assign it to the value of the perturbation vector. If the current solu-

tion is better than the best solution found until now, then update the best solution. Setz=z+ 1. If z < L,

then go to Step 1 to generate a new perturbation vector.

Step 6 For a fixed number of iterations do the following steps and report the best solution.

Step 6.1 Select two perturbation vectors randomly, perform random crossing to generate a new per-
turbation vector, and apply the mutation probability to each element. Find the index of the pertur-
bation vector with the worst objective function value, i.e. the maximum one, and replace it with
the new one.

Step 6.2 Apply the base heuristic, Steps 2-5, with the new perturbation vector.

There are different ways to implement an API method. The most obvious one is a strict descent method
(STRICT), in which the only adjacent pairwise interchanges leading to a decrease in the objective function
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value are accepted. But, there can be many neutral moves for the 1|r;| > w;T; problem, especially at the
beginning of the sequence. In Table 9, we compare the STRICT method with the proposed LDR to im-
prove the initial sequence given by the X-RM IV rule on each test problem. The proposed PSGA and other
algorithms were coded in C language, and run on a Sun Ultra 4000 workstation for the same 144 exper-
imental sets with 10 new replications. The results in Table 9 are averaged over 480 runs for each algorithm
for each value of n. In Table 10, we compare these alternative algorithms in more detail for each « and f§
combination for 100-jobs as an example, where the results are averaged over 40 runs. As it can be seen from
these tables, both of the API methods provide a significant improvement over the X-RM IV rule. Fur-
thermore, the LDR-based API method is better than the strict API method as expected.

We also experiment with two different base heuristics for the PSGA, one with LDR and one without.
Now, we will discuss the importance of capturing local minima information to guide the local search
heuristic. For each run, we compare a straightforward PSGA implementation, denoted as PSGA, that uses
the X-RM rule as a base heuristic with another using a local dominance rule-based API search, denoted as
PSGA + LDR. The difference between PSGA and PSGA + LDR is quite striking as tabulated in Tables 9
and 10. By defining and searching through a set of local minimums, we were able to improve the solution
quality in all measures significantly with a relatively small increase in the CPU time. Both PSGA and
PSGA + LDR algorithms were used to solve exactly the same problems, which leads to the conclusion that
the PSGA + LDR produces significantly less weighted tardiness than the PSGA. It is also important to note
that our objective at this stage is neither developing the most efficient local search algorithm for this

Table 9
Comparison of local search algorithms
X-RM IV STRICT LDR PSGA PSGA + LDR
n=>50 SwT; Min 140 0 0 65 0
Ave 205756 158408 137515 181800 116342
Max 2148702 2125395 2122368 2148702 1952310
Improv. Min 0.0 0.0005 0.0021 0.0 0.0044
Ave 0.0 0.3891 0.4760 0.1876 0.6141
Max 0.0 1.0 1.0 0.7341 1.0
CPU Time Min 0.0 0.0 0.0 358.0 400.0
Ave 0.2 1.67 1.66 420.8 471.1
Max 1.0 5.0 5.0 1124.0 1257.0
n =100 >ow,T; Min 179 0 0 172 0
Ave 842391 658423 571928 784240 484567
Max 7666581 7565859 7532090 7666581 7531949
Improv. Min 0.0 0.0028 0.0066 0.0 0.0098
Ave 0.0 0.3599 0.4760 0.1510 0.6220
Max 0.0 1.0 1.0 0.6614 1.0
CPU Time Min 0.0 0.0 0.0 558.0 648.0
Ave 2.2 2.34 2.52 662.2 766.7
Max 4.0 5.0 5.0 1052.0 1251.0
n=150 >owT; Min 593 0 0 589 0
Ave 1883721 1523182 1315561 1806107 1148883
Max 16599755 16502607 16319414 16599755 16319030
Improv. Min 0.0 0.0 0.0 0.0 0.013
Ave 0.0 0.3796 0.4896 0.1178 0.6225
Max 0.0 1.0 1.0 0.5517 1.0
CPU Time Min 2.0 2.0 2.0 1500.0 1702.0
Ave 5.0 5.26 5.63 1736.8 2000.8

Max 10.0 10.0 11.0 2927.0 3319.0
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Table 10
Results of computational experiments for n = 100
o p X-RM IV~ STRICT LDR PSGA PSGA + LDR
> wT; > wT; Improv. Y w;T; Improv. Y w;T; Improv. Y w;T; Improv.
0.0 0.05 Min 70196 69855  0.0028 69204  0.0067 70196 0.0 42076 0.0098
Ave 1924361 1898684  0.0116 1890575  0.0169 1924361 0.0 1827851  0.1782
Max 7666581 7565859  0.0419 7532090  0.0426 7666581 0.0 7531949 0.4658
0.25  Min 59375 56619  0.0159 45882  0.1351 59375 0.0 43637  0.1655
Ave 1829220 1662355  0.0694 1437588  0.2060 1791402  0.0152 1348253  0.2540
Max 6809100 5992967  0.1568 5136124  0.3148 6703911  0.0939 4904726  0.3304
0.50  Min 55295 48090  0.0174 33127 0.3226 52341 0.0 27883 0.3822
Ave 1671625 1503197  0.0941 995250  0.4105 1644704  0.0126 885651  0.4677
Max 6606341 6092684  0.1967 4205683  0.5115 6463177  0.0632 3737524 0.5694
0.5 0.05 Min 34479 25940  0.0267 26489  0.0267 30480  0.0253 24373 0.0862
Ave 1117840 877235  0.1870 872334 0.1925 969965  0.1265 747104 0.3091
Max 5011091 3828272 0.3609 3844935  0.3613 3998541  0.2665 3219422 0.4956
0.25  Min 48329 30858  0.1098 17250  0.0436 46358  0.0323 16395  0.3721
Ave 1360986 736767  0.4189 800324  0.4202 1212974  0.1028 536136  0.6019
Max 5525911 3646627  0.6249 4590018  0.7948 5123747  0.2416 2732638  0.8266
0.50  Min 36209 20665  0.0838 4764 0.2728 35036 0.0 4752 0.5427
Ave 1219116 695858  0.3829 446456  0.6532 1147394  0.0556 270320  0.7856
Max 5543098 3367827  0.6235 2753387  0.8924 5301109  0.1561 1470920  0.8926
1.0 0.05 Min 6759 4671  0.072 4766 0.0 4192 0.1012 3082 0.2627
Ave 190461 146708  0.2159 142531  0.2198 140362  0.2734 95008  0.4853
Max 803573 647845  0.3788 641729 0.4080 612019  0.4347 456213 0.7096
0.25  Min 5740 2131 0.1708 1398 0.2089 4531  0.0941 79  0.5745
Ave 332548 183738 0.4325 154491  0.5570 223220  0.2712 51279 0.8394
Max 1631781 1048077  0.9054 893493 09114 1027453  0.6178 418345  0.9903
0.50  Min 5534 1341 0.1727 140 0.4773 3351 0.0108 0.0 0.6997
Ave 300232 145470  0.5260 85800  0.7921 240794  0.2144 34860 09175
Max 1953964 951420  0.9431 887938  0.9913 1677660  0.4697 494235 1.0
1.5 0.05 Min 1039 485 0.1290 401 0.1298 551 0.0833 207 0.3807
Ave 44879 27376 0.4121 25245  0.4476 30637  0.3037 13334 0.7073
Max 177717 138124  0.7285 135238  0.7713 132188  0.6614 72486  0.8878
0.25  Min 781 15 0.3230 15 0.5758 661  0.0415 0.0 0.6827
Ave 58193 16483  0.7255 6938  0.8891 44778  0.2460 3340  0.9488
Max 385483 134815  0.9874 61926  0.9912 325981  0.5834 44460 1.0
0.50  Min 179 0.0 0.1099 0.0 0.3915 172 0.0 0.0 0.7933
Ave 59225 7205  0.8427 5816 0.8960 40288  0.1907 1673 0.9696
Max 497524 58339 1.0 49043 1.0 292898  0.6613 16932 1.0

problem nor selecting the best parameter combination for the PSGA. Our PSGA implementation converges
rather quickly, hence the initial schedule is very important. We deliberately implemented the proposed
dominance rule in a relatively new local search algorithms of GRASP and PSGA, because these algorithms,
unlike other local search algorithms, are very sensitive to the quality of the base heuristic.

5. Concluding remarks

In this study, we develop a new algorithm for the 1|r;| >~ w;T; problem, which gives a sufficient condition
for local optimality. The proposed algorithm is implemented on a set of heuristics including the X-RM and
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KZRM rules that are different combinations of ATC rule with the decision theory approach of Kanet and
Zhou [14] to implement principles of ATC rule to a dynamic environment. Enumerative algorithms, even
for total tardiness problem, require high computational effort. To our knowledge, there is no published
exact approach that simultaneously deals with total weighted tardiness problem and unequal release dates.
This enhances contribution of our study in the literature. Our computational experiments indicate that the
amount of improvement is statistically significant for all heuristics and the proposed algorithm dominates
the competing rules in all runs, therefore it can improve the upper bounding scheme in any enumerative
algorithm. Furthermore, the time-dependent local dominance rule-based API local search method is a
powerful exploitation (intensifying) tool since we know that the global optimum is one of the local opti-
mum solutions. If we search through a set of local optimum solutions, it is most likely that our search space
will contain the good solutions as demonstrated on GRASP- and PSGA-based local search algorithms.
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