Design and operation of MinIAQ: an untethered foldable miniature quadruped with individually actuated legs
dc.citation.epage | 252 | en_US |
dc.citation.spage | 247 | en_US |
dc.contributor.author | Karakadıoğlu, Cem | en_US |
dc.contributor.author | Askari, Mohammad | en_US |
dc.contributor.author | Özcan, Onur | en_US |
dc.coverage.spatial | Munich, Germany | en_US |
dc.date.accessioned | 2018-04-12T11:46:28Z | en_US |
dc.date.available | 2018-04-12T11:46:28Z | en_US |
dc.date.issued | 2017 | en_US |
dc.department | Department of Mechanical Engineering | en_US |
dc.description | Date of Conference: 3-7 July 2017 | en_US |
dc.description | Conference Name: 2017 IEEE International Conference on Advanced Intelligent Mechatronics, AIM 2017 | en_US |
dc.description.abstract | This paper presents the design, development, and basic operation of MinIAQ, an origami-inspired, foldable, untethered, miniature quadruped robot. Instead of employing multilayer composite structures similar to most microrobotic fabrication techniques, MinIAQ is fabricated from a single sheet of thin A4-sized PET film. Its legs are designed based on a simple four-bar locomotion mechanism that is embedded within its planar design. Each leg is actuated and controlled individually by separate DC motors enabling gait modification and higher degree of freedom on controlling the motion. The origami-inspired fabrication technique is a fast and inexpensive method to make complex 3D robotic structures through successive-folding of laser-machined sheets. However, there is still a need for improvement in modulating and extending the design standards of origami robots. In an effort to addressing this need, the primitive foldable design patterns of MinIAQ for higher structural integrity and rigidity are presented in detail. The current robot takes less than two hours to be cut and assembled and weighs about 23 grams where 3.5 grams is the weight of its body, 7.5 grams is its motors and encoders, 5 grams is its battery, and about 7 grams is its current on-board electronics and sensors. The robot is capable of running about 30 minutes on a single fully charged 150mAh single cell LiPo battery. Using the feedback signals from the custom encoders, MinIAQ can perform a trot gait with a speed of approximately 0.65 Bodylengths/sec, or equivalently 7.5 cm/s. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:46:28Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017 | en |
dc.identifier.doi | 10.1109/AIM.2017.8014025 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37639 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/AIM.2017.8014025 | en_US |
dc.source.title | Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics, AIM 2017 | en_US |
dc.subject | Foldable robots | en_US |
dc.subject | Legged robots | en_US |
dc.subject | Miniature robots | en_US |
dc.subject | Origami-inspired robots | en_US |
dc.subject | Unconventional manufacturing | en_US |
dc.title | Design and operation of MinIAQ: an untethered foldable miniature quadruped with individually actuated legs | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Design and operation of MinIAQ An untethered foldable miniature quadruped with individually actuated legs.pdf
- Size:
- 4.74 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version