Reducing communication volume overhead in large-scale parallel SpGEMM

Available
The embargo period has ended, and this item is now available.

Date

2016-12

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Sparse matrix-matrix multiplication of the form of C = A x B, C = A x A and C = A x AT is a key operation in various domains and is characterized with high complexity and runtime overhead. There exist models for parallelizing this operation in distributed memory architectures such as outer-product (OP), inner-product (IP), row-by-row-product (RRP) and column-by-column-product (CCP). We focus on row-by-row-product due to its convincing performance, row preprocessing overhead and no symbolic multiplication requirement. The paral- lelization via row-by-row-product model can be achieved using bipartite graphs or hypergraphs. For an efficient parallelization, we can consider multiple volume- based metrics to be reduced such as total volume, maximum volume, etc. Existing approaches for RRP model do not encapsulate multiple volume-based metrics. In this thesis, we propose a two-phase approach to reduce multiple volume- based cost metrics. In the first phase, total volume is reduced with a bipartite graph model. In the second phase, we reduce maximum volume while trying to keep the increase in total volume as small as possible. Our experiments show that the proposed approach is effective at reducing multiple volume-based metrics for different forms of SpGEMM operations.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

item.page.isversionof