REDUCING COMMUNICATION VOLUME OVERHEAD IN LARGE-SCALE PARALLEL SPGEMM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

By
Başak Ünsal
December 2016

REDUCING COMMUNICATION VOLUME OVERHEAD IN
 LARGE-SCALE PARALLEL SPGEMM
 By Başak Ünsal
 December 2016

We certify that we have read this thesis and that in our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Cevdet Aykanat(Advisor)
M. Mustafa Özdal

Tayfun Küçükyılmaz

Approved for the Graduate School of Engineering and Science:

[^0]
ABSTRACT
 REDUCING COMMUNICATION VOLUME OVERHEAD IN LARGE-SCALE PARALLEL SPGEMM

Başak Ünsal
M.S. in Computer Engineering
Advisor: Cevdet Aykanat
December 2016

Sparse matrix-matrix multiplication of the form of $C=A \times B, C=A \times A$ and $C=A \times A^{T}$ is a key operation in various domains and is characterized with high complexity and runtime overhead. There exist models for parallelizing this operation in distributed memory architectures such as outer-product (OP), inner-product (IP), row-by-row-product (RRP) and column-by-column-product (CCP). We focus on row-by-row-product due to its convincing performance, row preprocessing overhead and no symbolic multiplication requirement. The parallelization via row-by-row-product model can be achieved using bipartite graphs or hypergraphs. For an efficient parallelization, we can consider multiple volumebased metrics to be reduced such as total volume, maximum volume, etc. Existing approaches for RRP model do not encapsulate multiple volume-based metrics.

In this thesis, we propose a two-phase approach to reduce multiple volumebased cost metrics. In the first phase, total volume is reduced with a bipartite graph model. In the second phase, we reduce maximum volume while trying to keep the increase in total volume as small as possible. Our experiments show that the proposed approach is effective at reducing multiple volume-based metrics for different forms of SpGEMM operations.

Keywords: Parallel computing, combinatorial scientific computing, partitioning, sparse matrices, sparse operations, sparse matrix matrix multiplication.

ÖZET

BÜYÜK ÖLÇEKLİ PARALEL SYGEMM'DE İLETIŞiM HACMİNi DÜŞURME

Başak Ünsal
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Danışmanı: Cevdet Aykanat
Aralık 2016

Seyrek matris-matris çarpımları (SyGEMM) bir çok alanda en sık kullanılan operasyonlardan biridir. Bu işlemler genel olarak karmaşık ve uzun çalışma sürelerine ne sahiptir. Dağıtık bellek sistemlerinde bu işlemleri parallelleştirmek için bir çok yöntem mevcuttur. Bunlar: dış çarpım, iç çarpım, satır-satır çarpım ve sütün-sütün çarpımdır. Bu tezde, düşük önhazırlık, iyi performans ve sembolik çarpma gerektirmemesi gibi bir çok getirisinden dolayı satır-satır çarpımına yoğunlaşılmıştır. Satır-satır çarpımının paralelleştirilmesinde iki-kümeli çizgeler ve hiper çizgeler kullanılabilmektedir.

Daha verimli bir paralleştirme için, toplam hacim ve en yüksek hacim gibi bir çok hacim odaklı ölçüt dikkate alınabilir. Satır-satır çarpımlar için var olan yöntemler, bir çok hacim odaklı ölçütü aynı anda gerçekleştirmekte başarısız olmaktadırlar.

Bu tezde, bir çok hacim odaklı ölçütü aynı anda düşürmek için iki aşamalı bir yöntem önerdik. İlk aşamada, toplam hacim iki kümeli çizge kullanılarak düşurülmüştür. İkinci aşamada ise toplam hacimdeki artışı en azda tutmaya çalişarak en yüksek hacimi düşürdük.

Deneylerimizde görülebilmektedir ki, önerdiğimiz yöntem çeşitli SyGEMM işlemleri için bir çok hacim odaklı ölçeği aynı anda düşürmüştür.

Anahtar sözcükler: Paralel işlemler, kombinasyonal bilimsel uygulamalar, seyrek matrisler, seyrek işlemler, seyrek matris matris çarpımları .

Acknowledgement

First and foremost, I owe my deepest gratitude to my supervisor, Prof. Dr. Cevdet Aykanat for his encouragement, motivation, guidance and support throughout my studies. Also, I would like to thank to Dr. Oğuz Selvitopi for answering my endless questions patiently and helping me whenever I face a problem about my studies.

Special thanks to Asst. Prof. Dr. Mustafa Özdal and Asst. Prof. Dr. Tayfun Küçükylmaz for kindly accepting to be in my committee. I owe them my appreciation for their support and helpful suggestions.

A very special thanks goes to my parents Füsun and Yusuf for being there whenever I need them, to my sister Begum and my brother-in-law Alper for listening my endless complaints about everything and to my nephews Oreo and Toprak. This thesis have never been completed without their support.

Very valuable thanks to Ebru Ateş for everything she made for me. I would like to thank specially to Elif and Burak for cheering me up every time, to Seher for her wisdom and guiding me about every aspect of master. I am grateful to share enjoyable time with Gülfem and Kubilay before they left Ankara. I consider myself to be very lucky to have the most valuable friends from Bilkent, İstemi, Simge, Necmi, Caner, Troya, Mehmet, Gülce, Shatlyk, Hamed, Noushin, İlker, Fahrettin, Sitar, Gündüz, Pelin and Gökçe. Also, I would like to thank to every single person I met in Bilkent for making Ankara liveable for me.

There are also motivations to make me return home. I am grateful to my friends from bachelor degree, Onurcan, Merve, Çisel, Aykut, Cüneyt and to old friends, Başak, Nüket, Alper, İlke, Alper D. and Göksu.

Lastly, I would like to thank to CS department for supporting me during my master study.

Contents

1 Introduction 1
2 Related Work 3
2.1 One-phase approaches 3
2.2 Two-phase approaches 5
3 Background 7
3.1 Graph Partitioning 7
3.2 Sparse Matrices 8
3.3 Parallelization of Sparse Matrix-Matrix Multiplication 9
3.3.1 RRP and Representation of SpGEMM 11
3.3.2 Partitioning of the Bipartite Graph 15
3.3.3 Partitioning with fixed vertices 17
4 Proposed Method 18
4.1 First Phase 19
4.2 Second Phase 19
4.2.1 A Bipartite Graph Model for Balancing Volume Loads 19
4.2.2 A Bin Packing Heuristic for Distributing Communication Tasks 23
4.2.3 Partitioning the Second Phase Bipartite Graph 25
5 Experiments 28
5.1 Results for $C=A \times B$ 30
5.2 Results for $C=A \times A$ 33
5.3 Results for $C=A \times A^{T}$ 41
6 Conclusion and Future Work 47

List of Figures

3.1 Example data dependencies between rows of A and B. 13
3.2 Examples of $A(8 \times 10)$ and $B(10 \times 8)$ matrices. 13
3.3 Representation of matrices A and B via a bipartite graph. 14
3.4 A and B matrices after partitioning. 15
3.5 Bipartite model after partitioning 16
4.1 Representation of boundary vertices and cut edges. 21
4.2 Second phase bipartite graph. 22
4.3 Illustration of the bin packing algorithm. 24
4.4 Result of the bin packing algorithm. 25
4.5 Graph after second phase graph partitioning. 26
5.1 Comparison of maximum volume values for $C=A \times B$ 33
5.2 Comparison of maximum volume values for $C=A \times A$ 41
5.3 Comparison of maximum volume values for $C=A \times A^{T}$. 46

List of Tables

4.1 Status of the vertices after each phase. 27
5.1 Properties of input matrices. 29
5.2 Instances of $C=A \times B$ 30
$5.3 C=A \times B, K=256$ 31
$5.4 C=A \times B, K=512$ 31
$5.5 C=A \times B, K=1024$ 32
$5.6 C=A \times A, K=256$ 35
$5.7 C=A \times A, K=512$ 38
$5.8 C=A \times A, K=1024$ 40
$5.9 C=A \times A^{T}, K=256$ 43
$5.10 C=A \times A^{T}, K=512$ 44
$5.11 C=A \times A^{T}, K=1024$ 45

Chapter 1

Introduction

Sparse matrix-matrix multiplication (SpGEMM) in the form of $C=A \times B$, $C=A \times A$ and $C=A \times A^{\mathrm{T}}$ is a kernel operation for many scientific applications. It may arise in linear programming [1], molecular dynamics [2] [3], breadthfirst search [4], triangle counting in graphs [5] and recommendation systems [6]. Data used in those applications generally contain large sparse matrices and often computations on those matrices constitute computational bottlenecks. Hence, SpGEMM operations are parallelized to avoid long computation time. There exit different partitioning schemes for parallel SpGEMM; outer-product (OP), inner-product (IP), row-by-row-product (RRP) and column-by-column-product (CCP). Among these, RRP exhibits better parallelization performance due to the lower preprocessing overhead and requiring no symbolic multiplications. Those properties and advantages make RRP attractive compared to other models for parallelizing SpGEMM on distributed architectures.

In row-by-row-product parallelization, rows of A and rows of B are partitioned into K parts. After partitioning, an atomic task corresponds to multiplication of each nonzero in a row of A with the corresponding rows of B. This multiplication refers to computation task of the processor P_{k} that holds respective row of A. To perform the computational tasks, the needed data should be transferred between processors, which necessitate communication tasks. Thus, partitioning into K
parts requires distributing communication and computational tasks among K processors. Distributing communication tasks leads to an optimization problem related to minimizing amount of volume of data sent over processors, including total communication volume and maximum communication volume.

For RRP models, in the literature, there exist graph and hypergraph models in which rows represent vertices and nonzeros represent edges or hyperedges. These models aim to minimize volume-based metrics. Graphs used for RRP model are bipartite graphs. The existing bipartite graph model [7] fails to minimize multiple volume metrics at the same time and it fails to provide balanced communication tasks if the number of nonzeros in the rows has high variance,

This thesis introduces a two-phase bipartite graph model to reduce total and maximum volume sent over processors. In the first phase, total volume is minimized using bipartite graph model. In the second phase, the proposed bipartite model decreases the maximum communication volume while trying to keep the increase in total volume as small as possible. In other words, second phase tries to balance the communication loads of the processors. The proposed model in the second phase is orthogonal to the partitioning model used in the first phase. In other words, it can work with any readily partitioned instance.

Our comprehensive experiments demonstrate that our model balances maximum communication volume as expected while keeping total volume found in the first phase almost the same.

Chapter 2

Related Work

There exist plenty of applications about optimizing matrix-matrix or matrixvector multiplication problem for shared memory [8] [9] and distributed memory [10] [11] [12] [7] [13] architectures. Matrices used in those kernels can be large, containing million number of rows or columns. There are plenty of important volume-based cost metrics to consider for an efficient parallelization such as maximum volume sent by a processor, total volume, volume imbalance, total message and maximum message sent or received. The approaches in the literature can be categorized into two as one-phase or two-phase according to way they address multiple communication cost metrics.

2.1 One-phase approaches

Recently, Deveci et al. [10] extended their early proposed algorithm called UMPa, which only decrease maximum communication volume, to a multilevel hypergraph partitioning tool that can handle multiple cost metrics such as total volume, maximum communication volume, total and maximum number of messages simultaneously. In this method, directed hypergraphs are used for modelling number of messages received and sent from processors and maximum volume. In other
words, UMPa is compared with tools such as $\mathrm{PaToH}, \mathrm{Mondriaan}$ and Zoltan. Comparisons are done with $128,256,512$ and 1024 processors and a large number of example data sets show that UMPa obtains better results in terms of multiple communication cost metrics. For example, comparisons with PaToH indicate that, for 1024 processors, UMPa obtains 20% lower maximum number of messages sent by a processor and 14% lower total number of messages.

Acer et al. [11] focused on a model for sparse matrix dense matrix multiplication (SpMM) on distributed memory systems to decrease the cost of different volume metrics. Applications that belong to linear algebra operations and big data analysis utilizing SpMM causes high communication volume. The model presented in this work uses two different structures: graphs and hypergraphs. Using recursive bipartitioning in a single partitioning phase, their model tries to optimize not only total volume but also maximum send and receive volume. Experiments show that their graph model is 14.5 times faster than UMPa that addresses similar communication metrics. Besides running time, their graph model also increases the quality of the partitions by 3% in terms of maximum volume. Their hypergraph model has a higher improvement rate of 13% on partition quality and is also 3.4 times faster tham UMPa.

Recently, Slota et al. [14] presented a new partitioning tool called PuLP (Partitioning using Label Propagation) tailored for scale-free graph that arise in big data. Parallelization is crucial in this area since input data is generally too complex and consume considerable energy and execution time when it is applied in distributed systems. Since label propagation algorithm, which is an example of agglomerative clustering, takes less time and can be easily parallelized producing results with acceptable quality. Besides satisfying partitioning constraints, PuLP also tries to minimize multiple edge and volume costs at the same time. According to the experiments, PuLP outperforms METIS (which uses k-way multilevel partitioning algorithm) in terms of total edge cut and maximal cut edges per partition. Statistics shown in the paper indicate that PuLP consumes 8-39 times less memory compared to its alternatives. It is also mentioned that, the execution time of PuLP can be shorter than the state-of-art methods 14.5 times on average.

Although some of the approaches in the literature achieve quite successful partitioning results, there are some drawbacks using a single-phase approach. First of all, those methods may need to sacrifice some of the metrics to optimize others because it is difficult if not impossible to optimize multiple metrics at the same time in a single phase.

2.2 Two-phase approaches

Akbudak et al. [7] proposed a hypergraph and a bipartite graph model for parallelization of outer-product, inner-product and row-by-row-product SpGEMM. This method consists of two phases to minimize multiple communication cost metrics. In the first phase, their approach creates a hypergraph or graph that is also called computational models. Aim of this step is to reduce the total message volume and balance the computational loads of the processors. Following this step, the second phase constructs another hypergraph representing communication tasks to minimize the total message count and balance message volume loads of the processors. According to the experiments in the paper, for the first phase, bipartite graph is preferred to its hypergraph counterpart because of its low partitioning overhead and construction cost although its efficiency is insignificantly low. Also in the experiments, they show that by decreasing latency and the bandwidth costs using communication hypergraph, time required for SpGEMM can be decreased up to 32%.

Similarly, Bisseling et al. [12] worked on finding proper partitioning for parallel matrix-vector multiplication. In their model, they assume that the sparse matrix has already been partitioned and given as an input to the proposed approach. They apply their algorithms to find suitable partitions for input and output vectors. A new lower bound is defined for maximum communication load of processors. One of their algorithm, called Opt2, can find the optimal solution which reach that predefined lower bound in a particular occurrence of the matrix such that each column of the matrix can be partitioned into at most two processors in input vector. Additionally, there exists another heuristic called $L B$ that
is successful in finding good solutions in practice providing that it is followed by a greedy algorithm.

In [13], Ucar et al. presented a solution to overcome the problem of partitioning of unsymmetric square and rectangular sparse matrices thar are used in matrixvector multiplications. Although major part of the current partitioning models try to minimize total message volume, total message latency is also important metric to be considered. That is because sometimes start-up time required by a message can be longer than sending another message in the same package. To that end, they propose a two-phase methodology to minimize multiple communication costs. In the first phase, besides computational load balance, objective is to reduce message volume using existing 1D partitioning models. The following phase takes the result of the first phase as an input and creates a communication hypergraph using relations between vertices and processors. This phase aims to minimize total message volume and balance work load of processors using hypergraph partitioning. Results obtained from multiplication of parallel matrix-vector and matrix-transpose-vector using Message Passing Interface (MPI) indicate that, their model obtains considerable improvements over existing approaches.

It can be inferred that two-phase methods are more successful on optimizing multiple communication metrics. However, for both one- and two-phase methods, existing models fall short in the existence of communication tasks with nonuniform sizes.

Chapter 3

Background

3.1 Graph Partitioning

Standard graph model is represented as $G=(\mathcal{V}, \mathcal{E})$ where \mathcal{V} represents the vertex set and \mathcal{E} represents the edge set. Vertex v_{i} in the vertex set may be connected to other vertex v_{j} via edge $e_{i j}$. In this case, v_{j} is called neighbor of v_{i}. $\operatorname{Adj}\left(v_{i}\right)$ contains the set of neighbors of v_{i} which can be denoted as

$$
\operatorname{Adj}\left(v_{i}\right)=\left\{v_{j}: e_{i j} \in \mathcal{E}\right\} .
$$

Both edge $e_{i j}$ and vertex v_{i} may be associated with a cost $c_{i j}$ and w_{i} respectively.
$\Pi(G)=\left\{\mathcal{V}_{1}, \ldots, \mathcal{V}_{K}\right\}$ shows a K-way partition of the graph G where K is the number of processors or partitions. $\Pi(G)$ consists of K set of vertices where \mathcal{V}_{k} represents the vertex set which are assigned to part k. In the partition $\Pi(G)$ there can be two different types of edges, cut and uncut. If there exists an edge $e_{i j}$ between v_{i} and v_{j} that are assigned to different partitions, $e_{i j}$ is called as a cut edge. If the vertices v_{i} and v_{j} are in the same partition, $e_{i j}$ is said to be uncut. The total cutsize is given as

$$
\sum_{e_{i j} \in \mathcal{E}_{E}} c_{i j},
$$

where $\mathcal{E}_{E} \subseteq \mathcal{E}$ indicates the set of edge cuts. Additionally, in $\Pi(G)$, if a vertex
v_{i} have a cut edge, in other words, if the vertex have a connection with a vertex v_{j} that is in another partition, both vertex v_{i} and v_{j} are called boundary vertices. Boundary vertices necessitate communication in the system which will be specified as communication volume later in this section.

Sum of the weights of each vertex in \mathcal{V}_{k} denotes the weight of the partition \mathcal{V}_{k} which is denoted as $W\left(\mathcal{V}_{k}\right)$. There exists a balance criteria for a partition,

$$
W\left(\mathcal{V}_{k}\right) \leq W_{\text {avg }}(1+\varepsilon), \quad k \in\{1, \ldots, K\}
$$

where ε is imbalance value defined beforehand and $W_{\text {avg }}$ is the average of the weights of the partitions, i.e., $\sum_{k} W_{\text {avg }}^{c}\left(V_{k}\right) / K$.

3.2 Sparse Matrices

For the representation of the graph, matrices are commonly used because of ease of computation and construction. According to the structure of the data to be stored, matrix may be sparse or dense.

- Sparse matrix: Most of the data is zero.
- Dense matrix: Number of nonzeros is greater than the number of zero ones.

Since in sparse matrices, most of the data is zero, storing it in a twodimensional array structure is costly. Thus, there are couple of data structures to represent sparse matrices efficiently. The three common ones are,

1. Coordinate format (COO) : All entries are stored in a list which is in (row, column, value) format.
2. Compressed sparse row (CSR) : In this commonly preferred representation technique, matrix is represented using three different lists:
(a) IA: starts with 0 and stores the cumulative number of nonzeros in each row. List has (\#ofrows) +1 elements and ends with the total number of nonzero in the matrix.
(b) JA: stores the column value of each nonzero starting from the first row. This array consist of total number of nonzeros.
(c) A: consist of the nonzero values of the entries starting from top-left which is also have the same order as $J A$.

In case vertices or edges have weights, they can be stored in two different additional lists.

It provides fast data access without searching for data as in COO. Example 3.1 shows how to construct CSR for an example matrix M.

$$
M=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

$$
\begin{array}{r}
I A=\left[\begin{array}{lllll}
0 & 1 & 3 & 3 & 4
\end{array}\right] \\
J A=\left[\begin{array}{lllll}
1 & 0 & 3 & 2
\end{array}\right] \tag{3.1}\\
A=\left[\begin{array}{lllll}
2 & 1 & 4 & 3
\end{array}\right]
\end{array}
$$

3. Compressed sparse column (CSC) : This representation is quite similar to CSR. The only difference is that, columns are taken into account in IA instead of rows. In other words, CSC works like reverse of CSR.

3.3 Parallelization of Sparse Matrix-Matrix Multiplication

In scientific applications, one of the most common and crucial operations is sparse matrix-matrix multiplication (SpGEMM). Since the matrices used in those applications may have large number of rows and columns and high complexity,
sequential execution leads long running time. Therefore, parallelization of the multiplication becomes imperative. In the literature, there are four common ways to parallelize SpGEEM: outer-product-parallel, inner-product-parallel, row-by-row-product-parallel, column-by-column-product-parallel.

Taking $C=A \times B$ into account, these parallelization schemes work as follows:

1. Outer-product-parallel algorithm (OP): Columns of A and rows of B are mapped to the processors. In the computation, the elements in the column of A and the corresponding row of B are accessed once by the processors. After this operation, partial results are produced which means outer products may contribute to the same element in the output matrix C. Thus, elements of the C are needed to be accessed more than once.
2. Inner-product-parallel algorithm (IP): Rows of A and columns of B are mapped to the processors. In the computation, each multiplication calculates the result of only one element in C. Therefore, the elements of the C are accessed once by the responsible processor.
3. Row-by-row-product-parallel algorithm (RRP): Both A and B are partitioned rowwise. Elements in the rows of B are multiplied by the rows of A. Therefore, while nonzeros in the rows of A are used for computing once, rows of B are accessed more than once.
4. Column-by-column-product-parallel algorithm (CCP): Both A and B are partitioned columnwise. This algorithm works like reverse of the RRP. In other words, columns of B are used for computing once, whereas, the columns of A are accessed more than one. In both RRP and CCP, the elements of output matrix of the C are accessed once by the responsible processors.

As mentioned in previous sections, using RRP in parallelization of SPGEMM is more effective than using OP and IP in terms of speed and partitioning performance. Therefore, in this thesis, we focus on improving performance of RRP model.

3.3.1 RRP and Representation of SpGEMM

In RRP model, rows of $A\left(a_{i *}\right)$ and $B\left(b_{j *}\right)$ are mapped to the processors. The main operation is the multiplication of each nonzero $a_{i j}$ in $a_{i *}$ with all nonzero elements in $b_{j *}$. The atomic task regarding $i^{\text {th }}$ row of A is defined as

$$
\left\{a_{i, j} b_{j, *}: j \in \operatorname{cols}\left(a_{i, *}\right)\right\} .
$$

Data used in the atomic multiplication can be assigned to different processors. Therefore, it may be needed to be sent over partitions. Transferring data incurs communication in the system. We can categorize the operations in RRP SpGEMM as computational and communication tasks. Since every row of B is multiplied by each nonzero in the corresponding row of A, the computational tasks are defined on rows of A. Whereas, due to the fact that nonzeros in the rows of B are needed to be sent for the computational tasks, the communication tasks are defined on rows of B.

Bipartite graphs are specialized graphs that consist of disjoint sets of vertices. They constitute a natural way to model sparse matrix-matrix multiplication. Bipartite graph model only allows edges or connections between disjoint sets of vertices. We use following notation to represent RRP SpGEMM as a bipartite graph.

$$
\mathcal{G}_{R R P}=\left\{\mathcal{V}_{r r}^{A C} \cup \mathcal{V}_{r}^{B}, \mathcal{E}_{z}^{A}\right\}
$$

In the existing bipartite graph model [7], number of rows of A and number of row of B together give the number of vertices in $\mathcal{G}_{R R P}$. Each row of A is represented as a vertex in $\mathcal{V}_{r r}^{A C}$ and each row of B is represented as a vertex in \mathcal{V}_{r}^{B} set. The number of edges in the graph is equal to the number of nonzeros in matrix A because each nonzero in A signifies a dependency to a row B, that is captured with an edge. An edge $e_{i j}$ in edge set \mathcal{E}_{z}^{A} connects a vertex v_{i} with a vertex v_{j}.

$$
\left\{\mathcal{E}_{z}^{A}=e_{i j}: v_{i} \in \mathcal{V}_{r r}^{A C}, v_{j} \in \mathcal{V}_{r}^{B}\right\}
$$

Adjacency list of v_{i} denotes the set of vertices are neighbor of v_{i}. In SpGEMM, it represents the rows of B that should be received by v_{i} to perform multiplication.

$$
\operatorname{Adj}\left(v_{i}\right)=\left\{v_{j}: j \in \operatorname{cols}\left(a_{i, *}\right)\right\}
$$

Similarly, adjacency list of v_{j} consist of the neighbors of v_{j}. In other words, Adjacency list of v_{j} includes the computational tasks which need the respective row of B for their computation.

$$
\operatorname{Adj}\left(v_{j}\right)=\left\{v_{i}: i \in \operatorname{rows}\left(a_{*, j}\right)\right\}
$$

In the bipartite graph model, there are also weights for both edges and vertices. Weight of vertex v_{i} is calculated as computational load of the multiplication which can be also identified as the sum of number of nonzeros in each row of B that is needed for multiplication with the respective row of A :

$$
w\left(v_{i}\right)=\sum_{j \in \operatorname{cols}\left(a_{i, *}\right)} \# \text { nonzero }\left(b_{j, *}\right) .
$$

The vertices that belong to B do not have any weights because, they do not represent any computation tasks.

In the graph model, there also exist edge weights. Each vertex v_{j} determines the cost of its edges. For instance, for vertices v_{i} and v_{j}, the cost of $e_{i j}$ is assigned as the number of nonzeros in v_{j}. This is given by

$$
c\left(\left(v_{i}, v_{j}\right)\right)=c\left(e_{i j}\right)=c_{i j}=\# \text { nonzero }\left(b_{j, *}\right) .
$$

Expression of the formulations is shown on the example graph in Figure 3.1. In Figure 3.1, $a_{i 1, *}, \ldots, a_{i 4, *}$ denote the computational tasks and arrows indicate the data dependencies. For instance, in the graph, vertex $a_{i 1, *}$ needs three different rows $b_{j 1, *}, b_{j 2, *}$ and $b_{j 3, *}$. Therefore, the processors that store these rows of B should send them to the processor that stores $a_{i 1, *}$ prior to multiplication.

Figure 3.2 is given as an example for matrices A and B and Figure 3.3 illustrates the bipartite graph model that represents the SpGEMM operation $C=A \times B$. In the Figure 3.3, purple vertices represent rows of A whereas, green ones represent rows of B. Numbers on the edges stand for the weights of them. Similarly rectangular areas above the vertices indicate their weights.

Figure 3.1: Example data dependencies between rows of A and B.

$$
\begin{aligned}
A & =\left[\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] \\
B & =\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Figure 3.2: Examples of $A(8 \times 10)$ and $B(10 \times 8)$ matrices.

Figure 3.3: Representation of matrices A and B via a bipartite graph.

$$
\begin{aligned}
& A=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \quad \mathbb{I L} \\
& -\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \mathbb{I}
\end{aligned}
$$

Figure 3.4: A and B matrices after partitioning.

3.3.2 Partitioning of the Bipartite Graph

In the literature, there exist several tools for obtaining 1D partitioning on matrices. Metis [15], Scotch [16] and PuLP [14] are the tools among common ones. Using any of these partitioners, we can obtain a K-way partition as $\Pi=\left\{\mathcal{V}_{1}, \ldots, \mathcal{V}_{K}\right\}$.

As can be seen in Figures 3.4 and 3.5, bipartite graph is partitioned into $K=4$ parts. In the figure, partition 1 has a_{1} and b_{1}, b_{2}, partition 2 has $a_{2}, a_{3}, a_{4}, b_{3}, b_{4}$, partition 3 has $a_{5}, a_{6}, b_{5}, b_{6}, b_{7}$, partition 4 has $a_{7}, a_{8}, b_{8}, b_{9}, b_{10}$. In this graph, computation and communication costs can be also inferred. Recall that a vertex having an edge to a vertex in a different partition was called boundary vertex

Figure 3.5: Bipartite model after partitioning
such as $a_{1}, a_{2}, a_{3}, a_{5}$ and a_{7}. Boundary vertices incur communication overhead as much as their weights.

Since a_{1} requires b_{1}, b_{2} and b_{3} to compute first row of C, processor 2 and processor 3 needs to send b_{2} and b_{3} respectively. Because the number of nonzeros defines weight of the vertices, which is also the amount of computation, computational load of a processor can be found as the sum of the weights of vertices in that processor. For vertices of B, this weight is 0 because they do not signify any computation. In this case of example graph, computational load of processor 3 is $4+2+0+0+0=4$.

3.3.3 Partitioning with fixed vertices

In the problem of partitioning and repartitioning, fix vertices are commonly used. Difference of this partitioning from the regular one is that there is constraint for the part assignment of specific vertices. In this type of assignment, those specific vertices, which are also called fixed vertices, have predefined partition values that are specified before part assignment operation. For the set of the fixed vertices which belongs to part \mathcal{V}_{K} is shown as \mathcal{F}_{K} for $k=1, \ldots, K$. Regular partitioning step is applied to remaining free vertices which are denoted as $\mathcal{V}-\left\{\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup\right.$ $\left.\ldots \cup \mathcal{F}_{K}\right\}$.

Chapter 4

Proposed Method

In the scientific applications, the input matrices in SpGEMM may be related according to the applications' specific needs In other words, SpGEMM can represent three different types of operations:

- $C=A \times B$: represents the multiplication of two different sparse matrices
- $C=A \times A$: represents the multiplication of matrix with itself
- $C=A \times A^{T}$: represents the multiplication of matrix with its transpose
where A and B are sparse matrices. Regardless of the type of the operation and form of the matrices, bipartite graphs are used for modelling purpose. Different types of the operation do not require any alteration in the model.

In this thesis, we propose a new two-phase approach to reduce maximum volume and total volume. This two-phase approach also satisfies balanced computational work load on processors for RRP SPGEMM. In the first phase, the aim is to minimize the total communication volume. In the second phase, the aim is to reduce the maximum volume while keeping the increase in total volume found in the first phase as small as possible.

4.1 First Phase

First phase consist of existing state-of-art RRP SPGEMM partitioning method as described in previous sections. $C=A \times B$ is represented with a bipartite graph, where rows of A and B are represented by the vertices and nonzeros needed for rows of A constitute the edges. This graph shows computational dependencies among row vertices. The aim of first phase is to reduce total volume of processors. At the end of this phase, we obtain K-way partition Π_{1} for both rows of A and B, denoted as

$$
\Pi_{1}=\left\{\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{K}\right\}
$$

In the first phase, we choose Metis to partition the graph due to its success in reducing volume and balancing computational loads.

4.2 Second Phase

After reducing total volume in the first phase, the aim of the second phase is to reduce maximum communication volume sent by a processor and hence balance the communication loads of processors. This phase takes the result of the first phase as an input and applies two different methods for satisfying objectives mentioned above.

4.2.1 A Bipartite Graph Model for Balancing Volume Loads

Generating the second phase bipartite graph follows similar steps with the one in the first phase. Since the graph in this phase represents the communication tasks, the aim of this phase is to reduce maximum communication volume of the processors, we call this graph a communication graph $\left(\mathcal{V}_{\text {comm }}\right)$. In the graph model of this phase, there are two disjoint sets of vertices $\mathcal{V}_{B^{\prime}}$ and \mathcal{V}_{F} :

1. Boundary vertices $\left(\mathcal{V}_{B^{\prime}}\right)$: In the bipartite graph of the first phase, a vertex b_{i} in \mathcal{V}_{r}^{B} which has an outer edge is added to the set $\mathcal{V}_{B^{\prime}}$. That is because only the vertices in \mathcal{V}_{r}^{B} participate in communication tasks.

$$
\mathcal{V}_{B^{\prime}}=\left\{b_{i}: b_{i} \in \mathcal{V}_{B} \text { and } b_{i} \text { is boundary }\right\}
$$

2. Fixed vertices $\left(\mathcal{V}_{F}\right)$: Vertices in \mathcal{V}_{F} represent processors. Therefore, the number of fixed vertices is equal to the number of processors. These vertices do not have weights. Each fixed vertex f_{j} has a predefined partition, which is one of the processors.

$$
\mathcal{V}_{F}=\left\{f_{j}: f_{j} \text { is a fixed vertex and } 1 \leq f_{j} \leq K\right\}
$$

Thus, the new vertex set can be denoted as:

$$
\mathcal{V}_{\text {comm }}=\left\{\mathcal{V}_{B^{\prime}} \cup \mathcal{V}_{F}\right\} .
$$

Each edge $e_{i j}$ connects a vertex b_{i} in $\mathcal{V}_{B^{\prime}}$ and a fixed vertex f_{j} in \mathcal{V}_{F}. The edge is formed if there is a connection between a vertex and a processor. In other words, every boundary vertex has an edge between partition of its neighbors since it incurs communication. It can be denoted as:

$$
\mathcal{E}_{\text {comm }}=\left\{e_{i j}: v_{i} \in \mathcal{V}_{B^{\prime}}, v_{j} \in \mathcal{V}_{F}, \operatorname{Adj}\left(v_{i}\right) \cap \mathcal{V}_{j} \neq \emptyset\right\} .
$$

When all those formulations are combined in a graph, we have

$$
G_{\text {comm }}=\left\{\mathcal{V}_{\text {com }}, \mathcal{E}_{\text {comm }}\right\} .
$$

Figure 4.1: Representation of boundary vertices and cut edges.

Figure 4.2: Second phase bipartite graph.

In the Figure 4.1, the boundary vertices such as $b_{1}, b_{2}, b_{3}, b_{4}, b_{6}, b_{7}, b_{10}$ are marked as blue with the cut edges. For instance, for vertex b_{1}, there are three incoming edges: one is from partition 2 , other is from partition 4 and the last one is an internal edge. In this case, edges from a_{3} and a_{7} cause communication from partition 1 to 2 and 1 to 4 . On the other hand, b_{5} has two incoming edges
that are both from the same partition as b_{5}. Thus, it is not added to the new bipartite graph because there is no necessity for communicating b_{5}.

Figure 4.2 shows the second phase bipartite graph model as an example. Circle vertices represent the boundary vertices, triangle ones represent the fixed ones. All relations are inferred from Figure 4.1. Edge weights are defined as the weights of boundary vertices:

$$
c_{i j}=c\left(e_{i j}\right)=\# \text { nonzero }\left(v_{i}\right) .
$$

Since fixed vertices do not incur communication, their weights are zero. Weights of the vertices in $\mathcal{V}_{B^{\prime}}$ are calculated as the sum of weights of outgoing edges.

4.2.2 A Bin Packing Heuristic for Distributing Communication Tasks

As a baseline method, we use a variant of bin packing algorithm. In this heuristic, each processor is represented with a bin and each vertex is seen as an item to be assigned to the bins.

Algorithm 1 displays the bin packing algorithm. This algorithm takes the $\mathcal{G}_{\text {comm }}$ as an input. In the first step, all vertices except the fixed ones are sorted in descending order in terms of their weights. Starting from the vertex with the highest weight, they are assigned to the bins (processors) with the current lowest weight, which is one of the neighbors of that vertex (an illustration is given in Figure 4.3 and 4.4). The reason behind this is not to increase the load of the processor with the highest volume. This method also guarantees that no vertex is assigned to the part that is not in its neighbor list. For example, In Figure 4.1, vertex a_{2} is assigned to partition 2, however, all of its neighbors are in different partitions (Partition 1 and 3). Since we are picking the processor to be assigned in adjacency list of the vertex, for this phase, this bin packing heuristic avoids from such cases.

Data: Second phase bipartite graph $\mathcal{G}_{\text {comm }}$
Result: Partition vector of graph $\mathcal{G}_{\text {comm }}$
Sort vertices according to their weights in descending order;
while there exist an unassigned vertex v_{i} do
Find $\operatorname{Adj}\left(v_{i}\right)$;
Sort $\operatorname{Adj}\left(v_{i}\right)$ in ascending order;
Assign v_{i} to the processor $p_{k} \in \operatorname{Adj}\left(v_{i}\right)$ with the lowest total weight;
Update p_{k};
end
Algorithm 1: Bin packing algorithm.

Figure 4.3: Illustration of the bin packing algorithm.

Figure 4.4: Result of the bin packing algorithm.

4.2.3 Partitioning the Second Phase Bipartite Graph

For reducing maximum volume, we apply partitioning to the second phase bipartite graph.

Although bin packing heuristic guarantees to avoid assigning a vertex to the part which is not in the adjacency list of it, it may still cause some misassignments. For example, a vertex may have multiple neighbors in partition i, but, if there is another empty bin, it may be assigned to it. In this case, satisfying objectives may be failed. Using graph partitioning may provide more successful results in such cases. In Figure 4.5 and in Table 4.1, status of the vertices and graph after partitioning can be seen.

In this phase, it can be seen that only the placement of rows of B are changed. Since total volume calculated in the first phase does depend on the rows of A, after this phase, it is unlikely to increase since the partitioner will avoid making out-of-part assignments in order to not to increase cutsize. The assigned vertices are the boundary vertices of B and the partitioner is unlikely to assign vertices to the processors to the processors that is not in its neighbor list. By this means, total volume can be kept small and volume loads of the processors can be balanced by maintaining a balance on the part weights in the graph. Recall that the total messages of the vertices in a part corresponds to the send volume of the respective
processor. By feeding the law, imbalance threshold to the underlying partitioner, we can control the maximum volume and reduce it.

Figure 4.5: Graph after second phase graph partitioning.

Vertex in $1^{\text {st }}$ phase	$1^{\text {st }}$ partition	Vertex in $2^{\text {nd }}$ phase	$2^{\text {nd }}$ partition
b_{1}	1	b_{1}	1
b_{2}	1	b_{2}	1
b_{3}	2	b_{3}	2
b_{4}	2	b_{4}	2
b_{5}	3	-	-
b_{6}	3	b_{5}	3
b_{7}	3	b_{6}	3
b_{8}	4	-	-
b_{9}	4	-	-
b_{10}	4	b_{7}	4

Table 4.1: Status of the vertices after each phase.

Chapter 5

Experiments

Both bin packing and graph partitioning methods are tested on three forms of SpGEMM

$$
\begin{aligned}
& C=A \times B \\
& C=A \times A \\
& C=A \times A^{T}
\end{aligned}
$$

Approaches mentioned in Section 4 are applied on a large set of matrices retrieved from matrix market of University of Florida [17]. Those matrices are from real applications and also they are sparse. Names of the matrices used for each operation can be seen below.

- $C=A \times B:$ amazon0302, amazon0312, thermomech_dK
- $C=A \times A$: 2cubes_sphere, 598a, bfly, cca, cp2k-h2o-.5e7, cvxbqp1, fe_rotor, majorbasis, onera_dual, tandem_dual, torso2, wave.
- $C=A \times A^{T}:$ cont11_l, fome13, fome21, fxm4_6, pds-30, pds-40, sgpf5y6, watson_1, watson_2.

Properties of those input matrices are given in Table 5.1.

SpGEMM	matrix	rows	columns	\# of nonzeros
	cont11_l	1468599	1961394	5382999
	fome13	48568	97840	285056
	fome21	67748	216350	465294
$C=A \times A^{T}$	fxm4_6	22400	47185	265442
	pds-30	49944	158489	340635
	pds-40	66844	217531	466800
	sgpf5y6	246077	312540	831976
	watson_1	201155	286992	1055093
	watson_2	352013	677224	1846391
	2cubes_sphere	101492	101492	1647264
	598a	110971	110971	1483868
	bfly	49152	49152	196608
	cca	49152	49152	139264
	cp2k-h2o-.5e	279936	279936	3816315
$C=A \times A$	cvxbqp1	50000	50000	349968
	fe_rotor	99617	99617	1324862
	majorbasis	160000	160000	1750416
	onera_dual	85567	85567	419201
	tandem_dual	94069	94069	460693
	torso2	115967	115967	1033473
	wave	156317	156317	2118662
	amazon0302 (A)	262111	262111	1234877
	amazon0302-user (B)	262111	50000	576413
$C=A \times B$	amazon0312 (A)	400727	400727	3200440
	amazon0312-user (B)	400727	50000	882813
	thermomech_dK (A)	204316	204316	2846228
	thermomech_dM (B)	204316	204316	1423116

Table 5.1: Properties of input matrices.

Graphs are partitioned into 256, 512 and 1024 parts. Many important communication cost metrics are reported, which include:

- Total volume
- Maximum volume
- Volume imbalance
- Message count
- Maximum number of messages
- Message count imbalance

Below, Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 show these statistics for obtained partitions.

In the tables, there are two main sections: statistics for volume and message count. Columns 3-6 display the results of volume statistics whereas columns 7-9 represent cost metrics for message count. Representations of those statistics in the tables are: total (volume or message), maximum sent by a processor (Max.), Imbalance (Imb.). Furthermore, Ph. in the second column stands for Phase, 1st for 1st phase, BP for bin packing and GP for distributing communication tasks with graph partitioning. Also, Norm. in fifth column indicates the improvement in maximum volume, which is calculated as maximum volume of the specified method divided by maximum volume of the first phase. This gives us how much each method (BP and GP) decreases the maximum volume. According to this division, it can be inferred that the lower norm. value, the higher improvement.

Additionally, Figures 5.1, 5.2 and 5.3 include line plots that show comparison of the results of the three chosen data.

5.1 Results for $C=A \times B$

This section includes experimental results of multiplication of two different sparse matrices. Three example multiplication is tested using instances in Table 5.2.

	A	B
Instance 1	amazon0302	amazon0302-user2
Instance 2	amazon0312	mazon0312-user2
Instance 3	thermomech_dK	thermomech_dM

Table 5.2: Instances of $C=A \times B$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
amazon0302	1st	196589.2	2314.2	-	3.014	22695.6	201.6	2.274
	BP	196589.2	987.0	0.43	1.284	25245.8	191.8	1.944
	GP	196589.2	926.8	0.40	1.208	25301.4	183.4	1.856
amazon0312	1st	597211.8	7660.0	-	3.282	33332.0	250.8	1.924
	BP	597211.8	2827.0	0.37	1.212	43150.8	252.2	1.498
	GP	597211.8	2929.4	0.38	1.256	39149.8	251.2	1.642
thermomech_dK	1st	277905.6	1515.6	-	1.394	1350.8	8.4	1.592
	BP	277905.6	1204.6	0.79	1.108	1347.0	8.4	1.596
	GP	277905.6	1216.0	0.80	1.120	1351.6	8.4	1.590

Table 5.3: $C=A \times B, K=256$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
amazon0302	1st	225474.8	1939.0	-	4.402	39988.8	299.0	3.828
	BP	225474.8	674.4	0.35	1.532	45785.8	210.8	2.356
	GP	225476.8	562.4	0.29	1.276	45928.2	209.8	2.338
amazon0312	1st	701270.0	5439.2	-	3.970	68890.0	472.8	3.514
	BP	701270.0	2133.2	0.39	1.558	94522.6	472.0	2.558
	GP	701270.4	1735.0	0.32	1.266	88159.4	467.6	2.716
thermomech_dK	1st	403665.6	1070.0	-	1.356	2813.4	9.2	1.676
	BP	403665.6	888.4	0.83	1.128	2809.8	8.8	1.606
	GP	403665.6	889.8	0.83	1.128	2815.8	9.2	1.672

Table 5.4: $C=A \times B, K=512$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
amazon0302	1st	256536.4	1435.6	-	5.732	60558.4	351.8	5.950
	BP	256536.0	557.6	0.39	2.228	69539	234.6	3.454
	GP	256555.8	423.2	0.29	1.686	69624	211.2	3.106
amazon0312	1st	816563.6	5096.0	-	6.390	119300.6	871.0	7.480
	BP	816563.2	1796.0	0.35	2.252	166384.8	758.6	4.670
	GP	816582.4	1498.4	0.29	1.880	158762.8	749.2	4.834
thermomech_dK	1st	587916.8	796.8	-	1.390	5775.2	9.2	1.632
	BP	587916.8	653.8	0.82	1.140	5806.2	9.2	1.622
	GP	587916.8	655.6	0.82	1.142	5811.0	9.0	1.586

Table 5.5: $C=A \times B, K=1024$

For $C=A \times B$ operation, it can be inferred from tables that, the second phase decreases maximum communication volume sharply. When amazon0302 is taken into account, bin packing reduce the maximum volume by almost 57% for $K=256,65 \%$ for $K=512$ and 70% for $K=1024$ over the first phase. Although bin packing performs quite good in decreasing maximum volume, proposed GP still outperforms it. For instance, for amazon0302, GP is, 6% for $K=256,17 \%$ for $K=512$ and 24% for $K=1024$ better than BP.

Both proposed model and bin packing cannot provide better partitioning results in terms of maximum volume for data thermomech_dK. This matrix has a relatively uniform communication task size distribution and in such cases, it is expected that BP and GP to perform close.

Figure 5.1 shows the line plot of the results that are mentioned above.

- 1st phase
- BP
GP

Figure 5.1: Comparison of maximum volume values for $C=A \times B$

5.2 Results for $C=A \times A$

In this section, 12 different data sets are tested since $C=A \times A$ is more common. Results are given in Table 5.6, 5.7 and 5.8.

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
2cubes_sphere	1st	1707828.8	8814.2	-	1.322	3536.0	21.8	1.578
	BP	1707828.8	7663.0	0.87	1.148	3558.2	21.0	1.512
	GP	1707828.8	7150.2	0.81	1.070	3838.4	23.4	1.560
598a	1st	1054261.0	7645.0	-	1.854	2577.4	30.6	3.038
	BP	1054261.0	4453.8	0.58	1.080	2736.8	28.2	2.636
	GP	1054261.0	4580.6	0.60	1.112	2711.4	28.6	2.700
bfly	1st	144704.8	836.0	-	1.478	17406.2	96.2	1.416
	BP	144704.0	723.2	0.87	1.278	15842.8	85.0	1.376
	GP	144704.0	630.4	0.75	1.116	16623.4	80.6	1.242
brack2	1st	565889.0	4098.4	-	1.856	2327.0	28.8	3.172
	BP	565889.0	2536.4	0.62	1.146	2692.4	29.4	2.800
	GP	565889.0	2587.4	0.63	1.170	2612.0	30.0	2.942
						Continued on next page		

Table 5.6 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
cca	1st	41645.4	303.8	-	1.874	8545.6	49.4	1.480
	BP	41645.4	232.2	0.76	1.432	8161.4	58.0	1.818
	GP	41798.6	186.2	0.61	1.138	8421.0	52.8	1.606
cp2k-h2o-.5e7	1st	2021090.8	10391.8	-	1.316	3937.4	21.8	1.420
	BP	2021090.8	8395.4	0.81	1.064	3857.8	21.0	1.394
	GP	2021090.8	8388.6	0.81	1.066	4185.6	23.4	1.432
cp2k-h2o-e6	1st	643458.4	3292.8	-	1.310	3924.2	21.4	1.398
	BP	643458.4	2673.0	0.81	1.062	3593.2	20.6	1.468
	GP	643458.4	2688.2	0.82	1.068	4022.4	21.6	1.376
cvxbqp1	1st	131356.8	827.6	-	1.612	2033.6	14.0	1.762
	BP	131356.8	563.0	0.68	1.096	2344.4	15.2	1.662
	GP	131356.8	588.2	0.71	1.146	2338.2	15.0	1.642
fe_rotor	1st	1013511.2	6275.8	-	1.584	3021.2	37.4	3.166
	BP	1013511.2	5282.6	0.84	1.334	3399.2	49.8	3.750
	GP	1013511.2	4573.2	0.73	1.156	3394.8	39.0	2.940
fe_tooth	1st	674519.2	5370.0	-	2.038	2472.0	29.0	3.004
	BP	674519.2	3012.2	0.56	1.144	2723.6	28.4	2.670
	GP	674519.2	3006.8	0.56	1.140	2680.4	26.2	2.502
finance256	1st	367161.8	1923.6	-	1.342	1371.0	8.4	1.568
	BP	367161.8	1588.8	0.83	1.104	1619.8	11.8	1.864
	GP	367161.8	1569.6	0.82	1.092	1791.4	12.2	1.746
majorbasis	1st	364176.2	1964.6	-	1.380	1415.4	8.2	1.484
	BP	364176.2	1721.0	0.88	1.208	1020.6	6.8	1.706
	GP	364176.2	1601.6	0.82	1.126	1420.6	8.2	1.480
mario002	1st	195698.2	1091.8	-	1.428	1412.0	8.4	1.524
	BP	195698.2	842.8	0.77	1.102	1403.4	8.4	1.532
Continued on next page								

Table 5.6 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
mark3jac140	GP	195698.2	845.8	0.77	1.106	1407.6	8.4	1.528
	1st	304053.4	1751.2	-	1.474	4038.0	31.8	2.016
	BP	304053.4	1334.6	0.76	1.122	4597.8	35.6	1.982
onera_dual	GP	304053.4	1385.4	0.79	1.168	4850.4	39.0	2.058
	1st	161960.8	973.0	-	1.536	2719.6	27.2	2.558
	BP	161960.8	937.8	0.96	1.482	2368.4	21.2	2.290
poisson3Da	GP	161960.8	719.4	0.74	1.138	2653.4	22.2	2.140
	1st	1329005.6	8910.4	-	1.718	3891.4	26.8	1.762
	BP	1329005.6	5507.4	0.62	1.060	6255.6	42.0	1.718
tandem_dual	GP	1329005.6	5796.4	0.65	1.116	6184.8	42.2	1.748
	1st	174342.8	1018.4	-	1.494	2685.4	24.8	2.364
	BP	174342.8	1066.8	1.05	1.564	2369.2	21.4	2.314
tmt_sym	GP	174342.8	773.8	0.76	1.136	2651.4	22.2	2.142
	1st	394253.6	2006.4	-	1.302	1424.8	8.4	1.510
	BP	394253.6	1718.0	0.86	1.116	1202.4	8.0	1.704
torso2	GP	394253.6	1664.6	0.83	1.082	1423.8	8.4	1.510
	1st	238723.0	1382.4	-	1.482	1302.4	8.4	1.652
	BP	238723.0	1382.4	1.00	1.482	1090.2	7.4	1.736
wave	GP	238723.0	1049.4	0.76	1.126	1301.4	8.4	1.652
	1st	1504638.0	9177.4	-	1.562	3117.8	48.4	3.976
	BP	1504638.0	7273.2	0.79	1.236	3218.0	49.2	3.916
	GP	1504638.0	7029.8	0.77	1.196	3284.2	50.8	3.960

Table 5.6: $C=A \times A, K=256$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
2cubes_sphere	1st	2276742.2	5980.0	-	1.346	7428.8	23.8	1.638
	BP	2276742.2	5152.2	0.86	1.160	7697.2	24.2	1.606
	GP	2276742.2	4865.0	0.81	1.094	8389.4	24.8	1.514
598a	1st	1469042.8	5329.0	-	1.860	5476.8	30.0	2.804
	BP	1469042.8	3157.6	0.59	1.100	5972.2	29.6	2.536
	GP	1469042.8	3307.4	0.62	1.150	5950.4	30.0	2.582
bfly	1st	166922.4	524.8	-	1.608	26581.6	85.6	1.650
	BP	166921.6	444.8	0.85	1.364	23580.0	71.0	1.544
	GP	166921.6	382.4	0.73	1.172	24379.2	63.6	1.336
brack2	1st	826176.4	3682.4	-	2.282	4937.2	39.8	4.130
	BP	826176.4	1905.2	0.52	1.180	5874.8	41.8	3.646
	GP	826176.4	1947.2	0.53	1.208	5744.2	36.8	3.282
cca	1st	50892.2	181.4	-	1.824	10947.2	39.8	1.864
	BP	50892.2	145.2	0.80	1.460	10343.6	36.0	1.782
	GP	50892.2	113.8	0.63	1.144	10596.4	30.2	1.460
cp2k-h2o-.5e7	1st	2522116.2	7187.4	-	1.460	7533.0	21.4	1.454
	BP	2522116.2	5367.6	0.75	1.090	7614.6	21.6	1.452
	GP	2522116.2	5338.0	0.74	1.082	8306.6	23.2	1.432
cp2k-h2o-e6	1st	793205.8	2293.8	-	1.480	7373.4	22.0	1.528
	BP	793205.8	1667.4	0.73	1.076	6786.0	19.6	1.480
	GP	793205.8	1695.6	0.74	1.094	7623.6	22.0	1.476
cvxbqp1	1st	192599.8	700.4	-	1.862	4064.0	17.6	2.218
	BP	192599.8	440.8	0.63	1.172	4649.4	17.4	1.916
	GP	192599.8	445.4	0.64	1.186	4675.8	18.0	1.972
fe_rotor	1st	1449077.6	4755.8	-	1.680	6480.2	40.8	3.222
	BP	1449077.6	3774.2	0.79	1.334	7465.0	46.2	3.170
						Continued on next page		

Table 5.7 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
fe_tooth	GP	1449077.6	3336.8	0.70	1.176	7464.2	39.8	2.732
	1st	953480.8	4039.2	-	2.170	5185.0	29.4	2.902
	BP	953480.8	2183.0	0.54	1.172	5958.0	29.8	2.562
finance256	GP	953480.8	2212.8	0.55	1.188	5859.8	28.6	2.498
	1st	567635.4	1861.8	-	1.680	5268.0	16.6	1.616
	BP	567635.4	1249.0	0.67	1.128	5660.6	20.8	1.88
majorbasis	GP	567635.4	1241.2	0.67	1.120	6024.2	20.4	1.736
	1st	530204.0	1452.0	-	1.402	2912.8	8.4	1.476
	BP	530204.0	1296.0	0.89	1.254	2099.2	6.8	1.658
mario002	GP	530204.0	1181.4	0.81	1.140	2959.0	8.4	1.454
	1st	280145.8	790.0	-	1.442	2898.8	9.2	1.626
	BP	280145.8	612.6	0.78	1.122	2870.0	8.8	1.570
mark3jac140	GP	280145.8	613.6	0.78	1.122	2885.4	9.0	1.598
	1st	394977.0	1277.8	-	1.658	9451.8	46.0	2.490
	BP	394977.0	900.0	0.70	1.168	11088.4	42.2	1.95
onera_dual	GP	394977.0	919.4	0.72	1.192	11678.0	54.0	2.368
	1st	216017.8	685.8	-	1.626	5559.4	28.0	2.580
	BP	216017.8	617.8	0.90	1.462	4787.0	21.8	2.334
poisson3Da	GP	216017.8	491.0	0.72	1.166	5407.6	23.0	2.178
	1st	1982418.4	7467.8	-	1.928	9206.2	32.2	1.790
	BP	1982418.4	4146.0	0.56	1.072	15266.0	48.4	1.624
tandem_dual	GP	1984022.2	4334.2	0.58	1.116	15301.8	53.2	1.778
	1st	233553.8	692.0	-	1.516	5591.6	23.2	2.122
	BP	233553.8	688.2	0.99	1.508	4840.2	20.2	2.138
tmt_sym	GP	233553.8	524.8	0.76	1.152	5512.4	21.6	2.006
	1st	562842.0	1434.8	-	1.306	2915.6	8.2	1.438
						Continued	on nex	t page

Table 5.7 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
torso2	BP	562842.0	1228.2	0.86	1.116	2412.6	8.0	1.696
	GP	562842.0	1210.4	0.84	1.104	2913.8	8.2	1.442
	1st	349175.6	955.8	-	1.400	2744.2	8.8	1.642
	BP	349175.6	972.0	1.02	1.424	2113.2	7.6	1.842
wave	GP	349175.6	772.2	0.81	1.132	2743.0	8.8	1.642
	1st	2056352.0	6247.0	-	1.556	6532.0	50.6	3.966
	BP	2056352.0	5074.8	0.81	1.266	6794.6	52.4	3.948
	GP	2056352.0	4713.6	0.75	1.172	7039.8	56.8	4.132

Table 5.7: $C=A \times A, K=512$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
2cubes_sphere	1st	3053095.2	4167.6	-	1.400	15516.4	23.6	1.556
	BP	3053095.2	3477.2	0.83	1.166	16942.4	25.8	1.560
	GP	3053095.2	3341.8	0.80	1.122	18435.6	27.0	1.498
598a	1st	2031932.4	3566.2	-	1.796	11546.2	27.6	2.448
	BP	2031932.4	2235.8	0.63	1.126	13027.6	28.4	2.232
	GP	2031932.4	2319.4	0.65	1.172	13070.6	29.6	2.318
bfly	1st	191643.2	320.8	-	1.716	35082.2	62.4	1.820
	BP	191643.2	273.6	0.85	1.464	31128.4	50.2	1.652
	GP	191643.2	218.4	0.68	1.166	32260.4	43.2	1.370
brack2	1st	1204386.6	2805.6	-	2.386	10561.6	39.2	3.802
	BP	1204386.6	1396.6	0.50	1.188	12931.2	40.6	3.216
	GP	1204386.6	1445.4	0.52	1.228	12740.6	39.4	3.168
cca	1st	66031.6	116.8	-	1.810	16315.8	29.0	1.822
Continued on next page								

Table 5.8 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
cp2k-h2o-.5e7	BP	66031.6	96.0	0.82	1.488	15445.0	25.4	1.682
	GP	66031.6	75.4	0.65	1.170	15849.2	22.2	1.434
	1st	3223588.6	4802.2	-	1.524	14097.4	21.6	1.568
	BP	3223588.6	3475.6	0.72	1.106	15181.8	21.8	1.472
cp2k-h2o-e6	GP	3223588.6	3503.6	0.73	1.112	16499.2	24.2	1.502
	1st	1022555.4	1565.0	-	1.566	13597.2	22.4	1.688
	BP	1022555.4	1109.8	0.71	1.112	12973.0	20.4	1.610
cvxbqp1	GP	1022555.4	1136.8	0.73	1.138	14425.8	23.0	1.632
	1st	267422.0	639.4	-	2.448	8029.0	23.4	2.986
	BP	267422.0	320.6	0.50	1.228	9061.6	20.2	2.282
fe_rotor	GP	267422.0	320.8	0.50	1.230	9142.4	21.6	2.420
	1st	2062724.2	3706.4	-	1.840	13694.6	40.2	3.006
	BP	2062724.2	2693.8	0.73	1.336	16269.0	47.2	2.974
fe_tooth	GP	2062741	2449.2	0.66	1.216	16459.4	45.8	2.852
	1st	1358169.2	2809.8	-	2.120	10913.2	31.4	2.948
	BP	1358169.2	1604.6	0.57	1.210	13068.8	32.4	2.538
finance256	GP	1358169.2	1591.8	0.57	1.200	12969.2	31.0	2.448
	1st	775548.2	1545.4	-	2.038	14817.2	25.2	1.742
	BP	775548.2	933.8	0.60	1.234	16115.4	26.6	1.690
majorbasis	GP	775695.0	937.8	0.61	1.240	16853.0	26.6	1.616
	1st	777936.8	1111.0	-	1.462	5957.6	9.0	1.546
	BP	777936.8	965.8	0.87	1.272	4364.0	7.4	1.738
mario002	GP	777936.8	866.8	0.78	1.140	6212.4	9.0	1.484
	1st	398408.6	567.8	-	1.460	5898.4	9.4	1.632
	BP	398408.6	441.6	0.78	1.134	5813.4	9.2	1.620
	GP	398408.6	439.2	0.77	1.132	5857.0	9.2	1.610
Continued on next page								

Table 5.8 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
mark3jac140	1st	532522.8	991.4	-	1.906	21246.8	48.4	2.334
	BP	532520.4	629.8	0.64	1.210	23972.8	55	2.35
	GP	532715.6	661.4	0.67	1.270	25804.6	69.2	2.748
onera_dual	1st	287577.2	448.2	-	1.596	11198.0	29.2	2.670
	BP	287577.2	427.4	0.95	1.522	9634.2	22.8	2.424
	GP	287577.2	326.0	0.73	1.160	11014.4	24.4	2.268
poisson3Da	1st	3108008.4	9132.0	-	3.008	22337.6	47.0	2.154
	BP	3108008.4	3418.0	0.37	1.122	36814.8	59.2	1.646
	GP	3115837.4	3575.6	0.39	1.176	37717.4	61.8	1.678
tandem_dual	1st	307400.8	463.6	-	1.544	11339.0	25.6	2.312
	BP	307400.8	461.8	1.00	1.538	9708.2	20.4	2.150
	GP	307400.8	346.4	0.75	1.152	11221.2	22.2	2.026
tmt_sym	1st	803731.8	1095.2	-	1.396	5922.8	8.8	1.522
	BP	803731.8	877.6	0.80	1.118	4784.2	8.0	1.712
	GP	803731.8	872.6	0.80	1.110	5911.0	8.8	1.524
torso2	1st	509242.2	705.6	-	1.418	5683.6	9.2	1.658
	BP	509242.2	718.2	1.02	1.444	4209.2	7.8	1.894
	GP	509242.2	567.0	0.80	1.140	5693.2	9.2	1.656
wave	1st	2798127.0	4858.0	-	1.778	13513.4	54.2	4.108
	BP	2798127.0	3527.8	0.73	1.290	14301.6	46.8	3.352
	GP	2798127.0	3206.0	0.66	1.174	15022.4	53.0	3.616

Table 5.8: $C=A \times A, K=1024$

In the results of this section, it is shown on the tables that, for bfly, cca, 2cubes_sphere, fe_rotor, finance256, majorbasis, onera_dual, tandem_dual,
tmt_sym, torso2 and wave, GP ends up with more effective partitionings. However, for other data sets, BP and GP perform close due to uniform communication tasks sizes. Despite this, for a couple of data, the proposed model is significantly better than the baseline method. For example, when tandem_dual is analyzed, GP model shows almost 25% improvement against baseline method. Like tandem_dual, in most of the data, the proposed model outperforms baseline algorithm.

Examples of the three matrices that represent the results on tables are shown in Figure 5.2.

- 1st phase
- BP
GP

Figure 5.2: Comparison of maximum volume values for $C=A \times A$

5.3 Results for $C=A \times A^{T}$

$C=A \times A^{T}$ is tested on 10 different matrices.

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
cont11_1	1st	324599.4	1610.0	-	1.270	1518.2	8.4	1.418
	BP	324599.4	1506.6	0.94	1.186	1016.8	6.6	1.662
	GP	324599.4	1367.8	0.85	1.078	1517.2	8.4	1.418
Continued on next page								

Table 5.9 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
fome13	1st	241232.6	1369.0	-	1.452	6810.4	31.0	1.166
	BP	241232.6	1002.0	0.73	1.064	7010.4	31.0	1.132
	GP	241232.6	1039.2	0.76	1.100	6978.8	31.0	1.136
fome21	1st	103666.0	911.0	-	2.248	5582.8	45.2	2.072
	BP	103663.2	545.8	0.60	1.348	4612.2	34.0	1.888
	GP	103663.6	453.6	0.50	1.122	5621.0	39.8	1.812
fxm3_16	1st	56328.4	1844.2	-	8.400	1950.6	34.6	4.538
	BP	56328.4	557.0	0.30	2.534	2024.2	20.0	2.530
	GP	62734.2	469.0	0.25	1.912	4043.0	34.8	2.202
fxm4_6	1st	76774.6	1168.6	-	3.898	1276.0	31.6	6.332
	BP	76774.6	603.6	0.52	2.010	990.4	21.8	5.628
	GP	85785.0	465.6	0.40	1.390	2703.0	31.6	3.034
pds-30	1st	84254.8	735.4	-	2.234	5644.0	52.4	2.376
	BP	84253.6	423.4	0.58	1.288	4639.2	40.0	2.208
	GP	84254.0	372.8	0.51	1.132	5698.0	44.6	2.002
pds-40	1st	103761.0	912.8	-	2.250	5791.6	51.0	2.256
	BP	103758.8	552.6	0.61	1.364	4643.6	41.2	2.270
	GP	103758.8	463.4	0.51	1.142	5805.8	41.2	1.818
sgpf5y 6	1st	212399.2	2750.4	-	3.314	2571.6	8.08	8.758
	BP	212397.2	1136.4	0.41	1.372	3117.0	59.2	4.854
	GP	212397.4	969.8	0.35	1.168	2919.8	45.2	3.960
watson_1	1st	68126.0	619.6	-	2.330	704.6	9.4	3.416
	BP	68126.0	444.2	0.72	1.670	858.2	11.0	3.280
	GP	68492.0	324	0.52	1.212	966	12.6	3.342
watson_2	1st	68972.8	707.6	-	2.626	606.0	7.8	3.304
	BP	68972.8	455.8	0.64	1.690	776.4	11.6	3.822
Continued on next page								

Table 5.9 - continued from previous page

		Volume						Message Count		
Matrix	Ph.	Total	Max.	Norm.	Imb.		Total	Max.	Imb.	
	GP	69176.8	323.6	$\mathbf{0 . 4 6}$	1.200		879.0	13.8	4.020	

Table 5.9: $C=A \times A^{T}, K=256$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
cont11-1	1st	461205.8	1197.0	-	1.328	3052.2	8.6	1.442
	BP	461205.8	1107.4	0.93	1.230	2013.8	6.8	1.728
	GP	461205.8	987.0	0.82	1.096	3044.4	8.6	1.446
fome13	1st	282017.4	964.6	-	1.750	18673.6	54.4	1.492
	BP	282016.6	591.8	0.61	1.076	19878.0	53.2	1.372
	GP	282017.2	631.0	0.65	1.146	19821.6	51.6	1.332
fome21	1st	136761.0	621.2	-	2.326	10712.2	62.4	2.984
	BP	136759.8	358.0	0.58	1.340	9336.2	43.2	2.368
	GP	136760	305.0	0.49	1.140	10968.0	48.0	2.242
fxm3_16	1st	214944.2	2898.6	-	6.908	3178.0	34.0	5.468
	BP	214944.2	685.6	0.24	1.634	3250.6	32.2	5.072
	GP	215228.6	677.6	0.23	1.612	3276.2	29.0	4.534
fxm4_6	1st	275743.2	1249.8	-	2.320	2553.8	40.8	8.172
	BP	275743.2	696.2	0.56	1.294	2675.4	29.4	5.628
	GP	275743.2	691.6	0.55	1.284	2768.2	32.0	5.916
pds-30	1st	114084.4	530.0	-	2.380	10679.6	76.2	3.65
	BP	114080.8	298.4	0.56	1.340	9219.8	58.6	3.254
	GP	114080.8	255.4	0.48	1.146	10818.6	52.0	2.460
pds-40	1st	136003.4	629.0	-	2.368	10986.0	70.0	3.262
	BP	135998.6	357.6	0.57	1.346	9333.2	47.2	2.588
Continued on next page								

Table 5.10 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
sgpf5y 6	GP	135999.0	304.2	0.48	1.142	11150.2	50.4	2.314
	1st	346678.4	1749.2	-	2.582	7595.2	105.2	7.076
	BP	346677.6	812.4	0.46	1.200	9135.8	70.0	3.908
	GP	346677.6	809.6	0.46	1.196	8545.2	62.6	3.752
watson_1	1st	163171.8	744.0	-	2.336	1563.8	12.6	4.128
	BP	163171.8	492.2	0.66	1.544	1729.6	16.6	4.908
	GP	163386.2	402.0	0.54	1.260	1780.0	13.6	3.898
watson_2	1st	138786.0	775.2	-	2.862	1360.8	10.6	3.984
	BP	138786.0	456.4	0.59	1.682	1665.6	12.0	3.682
	GP	139604.6	335.8	0.43	1.230	2011.4	12.2	3.120

Table 5.10: $C=A \times A^{T}, K=512$

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
cont11_l	1st	651029.8	879.2	-	1.382	6119.0	9.4	1.574
	BP	651029.8	772.4	0.88	1.214	4002.6	7.2	1.842
	GP	651029.8	708.4	0.81	1.112	6103.2	9.4	1.578
fome13	1st	332381.2	641.8	-	1.976	36414.8	66.0	1.858
	BP	332366.8	442.8	0.69	1.364	39858.6	56.6	1.456
	GP	332369.8	393.4	0.61	1.210	39751.0	58.2	1.498
fome21	1st	184870.2	479.0	-	2.654	19652.6	73.0	3.804
	BP	184867.2	257.6	0.54	1.426	17622.0	63.0	3.662
	GP	184867.2	208.8	0.44	1.154	19824.0	51.0	2.632
fxm3_16	1st	518355.8	1957.0	-	3.862	6120.2	35.4	5.924
	BP	518350.8	699.6	0.36	1.382	6560.6	32.0	4.998
Continued on next page								

Table 5.11 - continued from previous page

Matrix	Ph.	Volume				Message Count		
		Total	Max.	Norm.	Imb.	Total	Max.	Imb.
fxm4_6	GP	518365.6	711.8	0.36	1.404	6780.0	36.0	5.438
	1st	497502.6	1724.2	-	3.550	6297.4	43.4	7.054
	BP	497500.8	656.8	0.38	1.354	6788.4	39.0	5.886
pds-30	GP	497511.0	628.4	0.36	1.294	6908.0	37.0	5.482
	1st	158621.6	384.4	-	2.482	18827.8	75.2	4.090
	BP	158613.2	220.4	0.57	1.422	16821.0	52.0	3.162
pds-40	GP	158613.4	181.0	0.47	1.170	18780.6	46.2	2.520
	1st	183238.8	442.6	-	2.474	19660.0	74.6	3.886
	BP	183235.6	256.4	0.58	1.432	17389.0	60.8	3.582
sgpf5y6	GP	183235.8	206.0	0.47	1.152	19841.6	50.2	2.592
	1st	528573.6	1128.8	-	2.188	17065.4	96.0	5.760
	BP	528569.2	643.6	0.57	1.246	17673.8	61.2	3.546
watson_1	GP	528569.6	649.0	0.57	1.256	17307.8	68.4	4.048
	1st	212189.8	705.4	-	3.404	2283.8	15.6	6.988
	BP	212189.8	491.2	0.70	2.368	2844.4	23.6	8.474
watson_2	GP	221908.8	298.2	0.42	1.378	6935.0	21.8	3.220
	1st	313009.0	813.8	-	2.664	3384.0	12.6	3.808
	BP	313006.8	497.8	0.61	1.628	3766.4	14.4	3.912
	GP	313843.2	383.8	0.47	1.254	4124.2	14.4	3.576

Table 5.11: $C=A \times A^{T}, K=1024$

We conducted experiments of $C=A \times A^{T}$ on wide variety of matrices. Similar to the previous findings, GP performs better than BP in most cases. GP obtain better results for matrices cont11_l, fome21, fxm3_16, fxm4_6, pds-30, pds-40, sgpf5y6, watson-1 and watson-2. Baseline and the proposed method could not find successful partitions only for single matrix fome13. Some of the matrices
like fxm3_16, fxm4_6, sgpf5y6 show an incredible performance improvement by reducing maximum volume by more than 60%. Also, proposed model ended up more than $15-20 \%$ improvement over bin packing in some data sets like $p d s$ - 30 , pds-40, watson_1 and watson_2.

- 1st phase
- BP
- GP

Figure 5.3: Comparison of maximum volume values for $C=A \times A^{T}$.

Chapter 6

Conclusion and Future Work

In this thesis, we addressed a new graph partitioning model for efficient parallelization of SPGEMM. Our approach is a two-phase method in which both phases utilizes a different bipartite graph models. There are two different objectives in our approach: reducing total communication volume and maximum communication volume sent by processors. This model consist of two phases. First phase aims to minimize total volume. In the second phase, using partitioning results of the first phase, aims to reduce maximum communication volume. Experiments show that our model is able to find partitions with better communication characteristics and reduces maximum communication volume when it is compared to the partitions produced by a heuristic that aims to achieve same feat.

As a future work, different partitioners can be evaluated especially the ones with a special emphasis on balancing part weights as reducing maximum volume depends on this formulation.

Bibliography

[1] R. H. Bisseling, T. Doup, and L. Loyens, "A parallel interior point algorithm for linear programming on a network of transputers," Annals of Operations Research, vol. 43, no. 2, pp. 49-86, 1993.
[2] M. Challacombe, "A general parallel sparse-blocked matrix multiply for linear scaling scf theory," Computer physics communications, vol. 128, no. 1, pp. 93-107, 2000.
[3] X.-P. Li, R. Nunes, and D. Vanderbilt, "Density-matrix electronic-structure method with linear system-size scaling," Physical Review B, vol. 47, no. 16, p. 10891, 1993.
[4] A. Buluç and J. R. Gilbert, "The combinatorial blas: Design, implementation, and applications," International Journal of High Performance Computing Applications, p. 1094342011403516, 2011.
[5] A. Azad, A. Buluç, and J. Gilbert, "Parallel triangle counting and enumeration using matrix algebra," in Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International, pp. 804-811, IEEE, 2015.
[6] G. Linden, B. Smith, and J. York, "Amazon. com recommendations: Item-to-item collaborative filtering," IEEE Internet computing, vol. 7, no. 1, pp. 76-80, 2003.
[7] K. Akbudak, O. Selvitopi, and C. Aykanat, "Partitioning models for scaling parallel sparse matrix-matrix multiplication," ACM Transactions on Parallel Computing, 2016 (under revision).
[8] W. Liu and B. Vinter, "An efficient gpu general sparse matrix-matrix multiplication for irregular data," in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 370-381, IEEE, 2014.
[9] N. Bell, S. Dalton, and L. N. Olson, "Exposing fine-grained parallelism in algebraic multigrid methods," SIAM Journal on Scientific Computing, vol. 34, no. 4, pp. C123-C152, 2012.
[10] M. Deveci, K. Kaya, B. Ucar, and U. Catalyurek, "Hypergraph partitioning for multiple communication cost metrics: Model and methods," Journal of Parallel and Distributed Computing, vol. 77, p. 6983, 2015.
[11] S. Acer, O. Selvitopi, and C. Aykanat, "Improving performance of sparse matrix dense matrix multiplication on large-scale parallel systems," Parallel Computing, vol. 59, pp. $71-96,2016$. Theory and Practice of Irregular Applications.
[12] R. H. Bisseling and W. Meesen, "Communication balancing in parallel sparse matrix-vector multiplication," Electronic Transactions on Numerical Analysis, vol. 21, pp. 47-65, 2005.
[13] B. Ucar and C. Aykanat, "Ecapsulating multiple communiction-cost metrics in partitioning sparse rectangular matrices for parallel matrix-vector multiplies," SIAM Journal of Scientific Computing, vol. 25, no. 6, pp. 1837-1859, 2003.
[14] G. M. Slota, K. Madduri, and S. Rajamanickam, "Pulp: Scalable multiobjective multi-constraint partitioning for small-world networks," IEEE International Conference on Big Data, 2014.
[15] G. Karypis and V. Kumar, "Metis-unstructured graph partitioning and sparse matrix ordering system," -, 1995.
[16] F. Pellegrini and J. Roman, "Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs.," nternational Conference on High-Performance Computing and Networking, 1996.
[17] T. A. Davis and Y. Hu, "The university of florida sparse matrix collection," ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1, 2011.

[^0]: Ezhan Karaşan
 Director of the Graduate School

