Utilizing multiple bioMEMS sensors to monitor orthopaedic strain and predict bone fracture healing
buir.contributor.author | Demir, Hilmi Volkan | |
buir.contributor.author | Ünal, Emre | |
buir.contributor.orcid | Demir, Hilmi Volkan|0000-0003-1793-112X | |
dc.citation.epage | 1880 | en_US |
dc.citation.issueNumber | 9 | en_US |
dc.citation.spage | 1873 | en_US |
dc.citation.volumeNumber | 37 | en_US |
dc.contributor.author | Wolynski, J. | en_US |
dc.contributor.author | Sutherland, C. | en_US |
dc.contributor.author | Demir, Hilmi Volkan | en_US |
dc.contributor.author | Ünal, Emre | en_US |
dc.contributor.author | Alipour, A. | en_US |
dc.contributor.author | Puttlitz, C. | en_US |
dc.contributor.author | McGilvray, K. | en_US |
dc.date.accessioned | 2020-02-11T11:47:52Z | |
dc.date.available | 2020-02-11T11:47:52Z | |
dc.date.issued | 2019 | |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | Department of Physics | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | Current diagnostic modalities, such as radiographs or computed tomography, exhibit limited ability to predict the outcome of bone fracture healing. Failed fracture healing after orthopaedic surgical treatments are typically treated by secondary surgery; however, the negative correlation of time between primary and secondary surgeries with resultant health outcome and medical cost accumulation drives the need for improved diagnostic tools. This study describes the simultaneous use of multiple (n = 5) implantable flexible substrate wireless microelectromechanical (fsBioMEMS) sensors adhered to an intramedullary nail (IMN) to quantify the biomechanical environment along the length of fracture fixation hardware during simulated healing in ex vivo ovine tibiae. This study further describes the development of an antenna array for interrogation of five fsBioMEMS sensors simultaneously, and quantifies the ability of these sensors to transmit signal through overlaying soft tissues. The ex vivo data indicated significant differences associated with sensor location on the IMN (p < 0.01) and fracture state (p < 0.01). These data indicate that the fsBioMEMS sensor can serve as a tool to diagnose the current state of fracture healing, and further supports the use of the fsBioMEMS as a means to predict fracture healing due to the known existence of latency between changes in fracture site material properties and radiographic changes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1873–1880, 2019 | en_US |
dc.description.provenance | Submitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2020-02-11T11:47:52Z No. of bitstreams: 1 Bilkent-research-paper.pdf: 268963 bytes, checksum: ad2e3a30c8172b573b9662390ed2d3cf (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-02-11T11:47:52Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 268963 bytes, checksum: ad2e3a30c8172b573b9662390ed2d3cf (MD5) Previous issue date: 2019 | en |
dc.description.sponsorship | National Institute of Arthritis and Musculoskeletal and Skin Diseases. Grant Number: R01AR069734‐01 | en_US |
dc.embargo.release | 2020-09-01 | |
dc.identifier.doi | 10.1002/jor.24325 | en_US |
dc.identifier.issn | 0736-0266 | |
dc.identifier.uri | http://hdl.handle.net/11693/53276 | |
dc.language.iso | English | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.relation.isversionof | https://doi.org/10.1002/jor.24325 | en_US |
dc.source.title | Journal of Orthopaedic Research | en_US |
dc.subject | Microelectromechanical system (MEMS) | en_US |
dc.subject | Fracture healing | en_US |
dc.subject | Biomechanics | en_US |
dc.subject | Ovine | en_US |
dc.title | Utilizing multiple bioMEMS sensors to monitor orthopaedic strain and predict bone fracture healing | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Utilizing_Multiple_BioMEMS_Sensors_to_Monitor_Orthopaedic_Strain_and_Predict_Bone_Fracture_Healing.pdf
- Size:
- 2.93 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: