Adaptive thermally tunable radiative cooling with angle insensitivity using phase-change-material-based metasurface

buir.contributor.authorBoşdurmaz, Ekin Bircan
buir.contributor.authorGhobadi, Amir
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidBoşdurmaz, Ekin Bircan|0000-0002-1826-7577
buir.contributor.orcidGhobadi, Amir|0000-0002-8146-0361
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage125948-8en_US
dc.citation.issueNumber12
dc.citation.spage125948-1
dc.citation.volumeNumber98
dc.contributor.authorBoşdurmaz, Ekin Bircan
dc.contributor.authorGhobadi, Amir
dc.contributor.authorÖzbay, Ekmel
dc.date.accessioned2024-03-13T07:46:42Z
dc.date.available2024-03-13T07:46:42Z
dc.date.issued2023-11-17
dc.departmentNanotechnology Research Center (NANOTAM)
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.departmentDepartment of Physics
dc.description.abstractRadiative cooling is the passive cooling of a material with the help of a specific spectral response to emit thermal energy into space through atmospheric transparency windows. However, most of the proposed designs have no dynamically tunable emission response. In this paper, we present a feasible inverse pyramid structure made of a phase change material (PCM) on top of a metallic mirror to realize an adaptive radiative cooler with almost angle-independent emission response. The design uses the thermally controlled PCM called Samarium nickelate (SmNiO3) to actively tune the spectral response of the design, which, in turn, allows the design to radiatively cool itself. The emission response of the design is compatible with atmospheric transmissive windows. As the design heated up to higher temperatures, the peak of the emission spectrum red-shifts and moves toward the atmospheric transparency window.
dc.description.provenanceMade available in DSpace on 2024-03-13T07:46:42Z (GMT). No. of bitstreams: 1 Adaptive_thermally_tunable_radiative_cooling_with_angle_insensitivity_using_phase-change-material-based_metasurface.pdf: 1065692 bytes, checksum: 3914bf8ae3e2b4c8ae6014d2b0312a1a (MD5) Previous issue date: 2023-12-01en
dc.identifier.doi10.1088/1402-4896/ad0a2b
dc.identifier.eissn1402-4896
dc.identifier.issn0031-8949
dc.identifier.urihttps://hdl.handle.net/11693/114656
dc.language.isoen
dc.publisherInstitute of Physics Publishing Ltd.
dc.relation.isversionofhttps://dx.doi.org/10.1088/1402-4896/ad0a2b
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titlePhysica Scripta
dc.subjectAdaptivity
dc.subjectAngle insensitivity
dc.subjectMetasurface
dc.subjectPhase change materials
dc.subjectRadiative cooling
dc.subjectSamarium nickelate
dc.titleAdaptive thermally tunable radiative cooling with angle insensitivity using phase-change-material-based metasurface
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adaptive_thermally_tunable_radiative_cooling_with_angle_insensitivity_using_phase-change-material-based_metasurface.pdf
Size:
993.74 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: