Design and construction of protein and peptide-based self-assembled nanostructures
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Self-assembly is the driving force for the formation of biological materials. From nucleic acid conformations to more complex cellular organizations, self-assembling structures shape biological functionality. So, the design of self-assembling biomolecular structures holds a great advantage for enhanced material properties. In biological processes, inorganic structures are created in a hierarchical fashion utilizing biomolecule-based templates. Since they have recognition and self-assembly properties, biomolecules can control highly organized inorganic material formation in nature. The bio-templating approach takes advantage of biomolecules’ self-assembly properties to develop new nanostructures with superior chemical and physical properties. Here, peptides and proteins including β-sheets, β-hairpins, α-helix, amyloid, capsid, ferritin, and albumin, used in the formation of nanostructures with desired functionality under mild environmental conditions, and their applications are discussed.