A new tool for differentiating hepatocellular cancer cells: patterned carbon nanotube arrays

Date

2015

Authors

Kucukayan-Dogu, G.
Gozen, D.
Bitirim, V.
Akcali, K. C.
Bengu, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Applied Surface Science

Print ISSN

0169-4332

Electronic ISSN

Publisher

Elsevier

Volume

351

Issue

Pages

27 - 32

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
14
downloads

Series

Abstract

We aimed to develop a new approach to detect the invasiveness and metastatic degree of hepatocellular carcinoma cells (HCC) based on their epithelial mesenchymal transition (EMT) status by using patterned carbon nanotubes (CNT) without any further surface functionalization. We used well differentiated HUH7 and poorly differentiated SNU182 cells to examine and compare their adhesive features on patterned CNTs. We found that the well differentiated HUH7 cells attached significantly more on the patterned CNTs than the poorly differentiated SNU182 cells due to the difference in epithelial and mesenchymal phenotypes of these cells. Collagen coated patterned CNTs having less roughness resulted in a decrease in the number of attached cells compared to non-coated patterned surfaces indicating that surface topography playing also a vital role on the cell attachment. LDH testing indicated no adverse, or thereof toxic effect of collagen coated or non-coated patterned surfaces on the HCC cells. The results of this study clearly suggest that patterned CNT surfaces can be used as a diagnostic tool to determine the invasiveness and metastatic level of HCCs. Hence, CNTs could be considered as a promising diagnostic tool for the detection of differentiation and invasiveness of the HCC cells. © 2015 Elsevier B.V. All rights reserved.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)