Self-assembled peptide nanofiber templated one-dimensional gold nanostructures exhibiting resistive switching

Date
2012
Advisor
Instructor
Source Title
Langmuir
Print ISSN
0743-7463
Electronic ISSN
1520-5827
Publisher
American Chemical Society
Volume
28
Issue
47
Pages
16347 - 16354
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Abstract

An amyloid-like peptide molecule self-assembling into one-dimensional nanofiber structure in ethanol was designed and synthesized with functional groups that can bind to gold ions. The peptide nanofibers were used as templates for nucleation and growth of one-dimensional gold nanostructures in the presence of ascorbic acid as reducing agent. We performed multistep seed-mediated synthesis of gold nanoparticles by changing peptide/gold precursor and peptide/reducing agent ratios. Gold nanostructures with a wide range of morphologies such as smooth nanowires, noodle-like one-dimensional nanostructures, and uniform aggregates of spherical nanoparticles were synthesized by use of an environmentally friendly synthesis method. Nanoscale electrical properties of gold-peptide nanofibers were investigated using atomic force microscopy. Bias dependent current (IV) measurements on thin films of gold-peptide nanofiber hybrid revealed tunneling dominated transport and resistive switching. Gold-peptide nanofiber composite nanostructures can provide insight into electrical conduction in biomolecular/inorganic composites, highlighting their potential applications in electronics and optics. © 2012 American Chemical Society.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)