Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes
dc.citation.epage | 387 | en_US |
dc.citation.spage | 379 | en_US |
dc.citation.volumeNumber | 155 | en_US |
dc.contributor.author | Çakmak, Z. E. | en_US |
dc.contributor.author | Ölmez, T. T. | en_US |
dc.contributor.author | Çakmak, T. | en_US |
dc.contributor.author | Menemen, Y. | en_US |
dc.contributor.author | Tekinay, T. | en_US |
dc.date.accessioned | 2016-02-08T10:58:19Z | |
dc.date.available | 2016-02-08T10:58:19Z | |
dc.date.issued | 2014 | en_US |
dc.description.abstract | In this study, impacts of different element absence (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) on element uptake and triacylglycerol production was followed in wild type Chlamydomonas reinhardtii CC-124 strain. Macro- and microelement composition of C. reinhardtii greatly differed under element regimes studied. In particular, heavy metal quotas of the microalgae increased strikingly under zinc supplementation. Growth was suppressed, cell biovolume, carbohydrate, total neutral lipid and triacylglycerol levels increased when microalgae were incubated under these element regimes. Most of the intracellular space was occupied by lipid bodies under all nutrient starvations, as observed by confocal microscopy and transmission electron micrographs. Results suggest that sulfur, magnesium and phosphorus deprivations are superior to nitrogen deprivation for the induction triacylglycerol production in C. reinhardtii. On the other hand, FAME profiles of the nitrogen, sulfur and phosphorus deprived cells were found to meet the requirements of international standards for biodiesel. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:58:19Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en_US |
dc.identifier.doi | 10.1016/j.biortech.2013.12.093 | en_US |
dc.identifier.issn | 0960-8524 | |
dc.identifier.uri | http://hdl.handle.net/11693/26323 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.biortech.2013.12.093 | en_US |
dc.source.title | Bioresource Technology | en_US |
dc.subject | Chlamydomonas reinhardtii | en_US |
dc.subject | Ionome | en_US |
dc.subject | Neutral lipid | en_US |
dc.subject | Nutrient regime | en_US |
dc.subject | Triacylglycerol | en_US |
dc.subject | Chlamydomonas reinhardtii | en_US |
dc.subject | International standards | en_US |
dc.subject | Ionome | en_US |
dc.subject | Microelement composition | en_US |
dc.subject | Neutral lipid | en_US |
dc.subject | Phosphorus deprivations | en_US |
dc.subject | Transmission electron micrograph | en_US |
dc.subject | Triacylglycerols | en_US |
dc.subject | Algae | en_US |
dc.subject | Heavy metals | en_US |
dc.subject | Magnesium | en_US |
dc.subject | Microorganisms | en_US |
dc.subject | Nitrogen | en_US |
dc.subject | Nutrients | en_US |
dc.subject | Phosphorus | en_US |
dc.subject | Sulfur | en_US |
dc.subject | Zinc | en_US |
dc.subject | Glycerol | en_US |
dc.subject | Carbohydrate | en_US |
dc.subject | Copper | en_US |
dc.subject | Iron | en_US |
dc.subject | Magnesium | en_US |
dc.subject | Molybdenum | en_US |
dc.subject | Nitrogen | en_US |
dc.subject | Phosphorus | en_US |
dc.subject | Potassium | en_US |
dc.subject | Sulfur | en_US |
dc.subject | Triacylglycerol | en_US |
dc.subject | Zinc | en_US |
dc.subject | Biofuel | en_US |
dc.subject | Nile red | en_US |
dc.subject | Oxazine derivative | en_US |
dc.subject | Triacylglycerol | en_US |
dc.subject | Alcohol | en_US |
dc.subject | Biochemical composition | en_US |
dc.subject | Biotechnology | en_US |
dc.subject | Comparative study | en_US |
dc.subject | Food supplementation | en_US |
dc.subject | Green alga | en_US |
dc.subject | Growth rate | en_US |
dc.subject | Lipid | en_US |
dc.subject | Nutrient uptake | en_US |
dc.subject | Nutritional status | en_US |
dc.subject | Article | en_US |
dc.subject | Bacterial growth | en_US |
dc.subject | Cell density | en_US |
dc.subject | Cell growth | en_US |
dc.subject | Cell structure | en_US |
dc.subject | Chlamydomonas reinhardtii | en_US |
dc.subject | Confocal microscopy | en_US |
dc.subject | Controlled study | en_US |
dc.subject | Dry weight | en_US |
dc.subject | Growth rate | en_US |
dc.subject | Intracellular space | en_US |
dc.subject | Lipid storage | en_US |
dc.subject | Lipogenesis | en_US |
dc.subject | Microalga | en_US |
dc.subject | Nonhuman | en_US |
dc.subject | Nutrient limitation | en_US |
dc.subject | Priority journal | en_US |
dc.subject | Starvation | en_US |
dc.subject | Wild type | en_US |
dc.subject | Bioreactor | en_US |
dc.subject | Biosynthesis | en_US |
dc.subject | Chlamydomonas reinhardtii | en_US |
dc.subject | Comparative study | en_US |
dc.subject | Deficiency | en_US |
dc.subject | Infrared spectroscopy | en_US |
dc.subject | Mass fragmentography | en_US |
dc.subject | Mass spectrometry | en_US |
dc.subject | Metabolism | en_US |
dc.subject | Transmission electron microscopy | en_US |
dc.subject | Biofuels | en_US |
dc.subject | Bioreactors | en_US |
dc.subject | Chlamydomonas reinhardtii | en_US |
dc.subject | Gas Chromatography-Mass Spectrometry | en_US |
dc.subject | Magnesium | en_US |
dc.subject | Mass Spectrometry | en_US |
dc.subject | Microscopy, Confocal | en_US |
dc.subject | Microscopy, Electron, Transmission | en_US |
dc.subject | Nitrogen | en_US |
dc.subject | Oxazines | en_US |
dc.subject | Phosphorus | en_US |
dc.subject | Spectroscopy, Fourier Transform Infrared | en_US |
dc.subject | Sulfur | en_US |
dc.subject | Triglycerides | en_US |
dc.title | Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Induction of triacylglycerol production in Chlamydomonas reinhardtii Comparative analysis of different element regimes.pdf
- Size:
- 1.5 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version