Theories of nanoparticle and nanostructure formation in liquid phase
dc.citation.epage | 619 | en_US |
dc.citation.spage | 597 | en_US |
dc.contributor.author | Karatutlu, A. | en_US |
dc.contributor.author | Barhoum, A. | en_US |
dc.contributor.author | Sapelkin, A. | en_US |
dc.date.accessioned | 2019-02-21T16:01:21Z | |
dc.date.available | 2019-02-21T16:01:21Z | |
dc.date.issued | 2018 | en_US |
dc.department | Nanotechnology Research Center (NANOTAM) | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.description.abstract | Nanoparticles (NPs) and nanostructured materials exhibit shape- and size-dependent properties that are desired for a wide variety of applications, such as catalysis, sensing, drug delivery, energy production, and storage. In view of this, it is essential to produce well-defined NPs and nanostructures with desired characteristics, to understand their formation and growth mechanisms, and to define the critical size below which they act differently from bulk materials in order to develop synthetic strategies. For example, quantum dots (below 20nm) are mainly single nanocrystals characterized by a single-domain crystalline lattice without grain boundaries. These tiny individual crystals differ drastically from bulk polycrystalline materials. In fact, existing investigations indicated that ordered polycrystalline particles are preferably formed at high supersaturations, where rapid nucleation generates many NPs, which subsequently tend to aggregate randomly at high NP concentrations. Single crystals, such as quantum dots, form at low supersaturations. The reduction of the supersaturation to a level at which primary NPs are still formed in solution yields mesocrystals. This chapter discusses the advanced nucleation and growth theories that are used to explain the growth of the obtained nanoparticles and nanostructures to the desired structures. | |
dc.description.provenance | Made available in DSpace on 2019-02-21T16:01:21Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018 | en |
dc.identifier.doi | 10.1016/B978-0-323-51254-1.00020-8 | |
dc.identifier.isbn | 9780128135167 | |
dc.identifier.isbn | 9780323512541 | |
dc.identifier.uri | http://hdl.handle.net/11693/49828 | |
dc.language.iso | English | |
dc.publisher | Elsevier | |
dc.relation.isversionof | https://doi.org/10.1016/B978-0-323-51254-1.00020-8 | |
dc.source.title | Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends | en_US |
dc.subject | Crystal | en_US |
dc.subject | Free energy | en_US |
dc.subject | Nanoparticle (NP) | en_US |
dc.subject | Nucleation | en_US |
dc.subject | Ostwald ripening | en_US |
dc.subject | Supersaturation | en_US |
dc.title | Theories of nanoparticle and nanostructure formation in liquid phase | en_US |
dc.type | Book Chapter | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Theories_of_nanoparticle_and_nanostructure_formation_in_liquid_phase.pdf
- Size:
- 1.03 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version