Discrimination between closed-and open-shell (Turkish) pistachio nuts using undecimated wavelet packet transform

Date

2008

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Biological Engineering Transactions

Print ISSN

2162-643X

Electronic ISSN

2330-0337

Publisher

American Society of Agricultural and Biological Engineers

Volume

1

Issue

2

Pages

159 - 172

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Due to low consumer acceptance and the possibility of immature kernels, closed-shell pistachio nuts should be separated from open-shell nuts before reaching the consumer. A system using impact acoustics as a means of classifying closed-shell nuts from open-shell nuts has already been shown to be feasible and have better discrimination performance than a mechanical system. The accuracy of an impact acoustics based system is determined by the signal processing and feature extraction procedures. In this article, a new time-frequency plain feature extraction and classification algorithm was developed to discriminate between open- and closed-shell pistachio nuts produced in the Gaziantep region of Turkey. The proposed approach relies on the analysis of the impact acoustics signal of pistachio nuts, which are emitted from their impact with a steel plate after dropping from a certain height. Features are extracted by decomposing the acoustic signals into time and frequency components, using double-tree undecimated wavelet packet transform. The most discriminative features from the dual tree nodes are selected by a wrapper strategy that includes the structural pruning of the double-tree feature dictionary. The proposed approach requires no prior knowledge of the relevant time or frequency content of the acoustic signals. The algorithm used a small number of features and achieved a classification accuracy of 91.7% on the validation data set, while separating the closed shells from the open ones. A previously implemented algorithm, which uses maximum signal amplitude, absolute integration, and gradient features, achieved 82% classification accuracy on the same dataset. The results show that the time-frequency features extracted from impact acoustics can be used successfully for classification of open- and closed-shell Turkish pistachios.

Course

Other identifiers

Book Title

Citation