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Discrimination Between Closed and Open
Shell (Turkish) Pistachio Nuts Using

Undecimated Wavelet Packet Transform
N. F. Ince,  F. Goksu,  A. H. Tewfik,

I. Onaran,  A. E. Cetin,  T. C. Pearson

ABSTRACT. Due to low consumer acceptance and the possibility of immature kernels,
closed‐shell pistachio nuts should be separated from open‐shell nuts before reaching the
consumer. A system using impact acoustics as a means of classifying closed-shell nuts from
open-shell nuts has already been shown to be feasible and have better discrimination
performance than a mechanical system.The accuracy of an impact acoustics based system is
determined by the signal processing and feature extraction procedures. In this article, a new
time‐frequency plain feature extraction and classification algorithm was developed to
discriminate between open‐ and closed‐shell pistachio nuts produced in the Gaziantep region
of Turkey. The proposed approach relies on the analysis of the impact acoustics signal of
pistachio nuts, which are emitted from their impact with a steel plate after dropping from a
certain height. Features are extracted by decomposing the acoustic signals into time and
frequency components, using double‐tree undecimated wavelet packet transform. The most
discriminative features from the dual tree nodes are selected by a wrapper strategy that
includes the structural pruning of the double‐tree feature dictionary. The proposed approach
requires no prior knowledge of the relevant time or frequency content of the acoustic signals.
The algorithm used a small number of features and achieved a classification accuracy of
91.7% on the validation data set, while separating the closed shells from the open ones. A
previously implemented algorithm, which uses maximum signal amplitude, absolute
integration, and gradient features, achieved 82% classification accuracy on the same dataset.
The results show that the time‐frequency features extracted from impact acoustics can be used
successfully for classification of open‐ and closed‐shell Turkish pistachios.

Keywords. Classification, Impact acoustic, Turkish pistachios, Undecimated wavelet packet
transform.

losed‐shell pistachio nuts could be rejected by consumers because they are
difficult to open or can contain immature kernels. Therefore, their separation
from open‐shell nuts is crucial. Closed‐shell pistachio nuts are currently

separated from open‐shell nuts by mechanical devices called “pinpickers.” These
machines can inadvertently damage the kernel of open‐shell nuts by inserting a needle
into the kernel meat. The hole created by the needle can give the appearance of an insect
tunnel, which causes rejection by the consumer. In addition, according to Pearson (2001),
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approximately 5% to 10% of all open‐shell pistachio nuts in the U.S. are incorrectly
classified by mechanical devices as having a closed shell, costing the industry $3.75 to
$7.5 million per year in lost revenue. Therefore, high‐accuracy classification systems are
needed in the industry.

A number of classification devices have been designed for the separation of open‐ and
closed‐shell pistachio nuts. Prior versions of these systems were based on the processing
of 2D images of pistachio nuts. Due to the high cost and slight improvements in the final
classification accuracy over existing methods, these systems did not find widespread
application in the industry. For a description of these computerized vision‐based
techniques and a short comparison of their performances, refer to Pearson (2001) and
Ghazanfari et al. (1997). Recently, a new non‐contact system based on impact acoustic
emission has been proposed for food kernel inspection, which overcomes several
limitations of the approaches summarized above. This system was designed to separate
pistachio nuts with closed shells from those with open shells by analyzing their impact
acoustics (Pearson, 2001). Acoustic recordings were obtained by impacting the pistachio
nuts onto a steel plate. During the off‐line training (learning) phase, a total of 359 features
were extracted from the recorded signals. This rich feature set was formed from several
properties of the signal, such as the integration of the absolute value of the signal, all
frequency spectra magnitudes computed using a 256‐point FFT with a Hanning window,
and the gradient and magnitude thresholds from several time points. Because it is difficult
to use all features in real‐time processing, due to high computational cost and
dimensionality, among those 359 features, a subset of three features were selected
through an exhaustive search. The real‐time constraint is that the nut under examination
be classified before the next nut comes into the system. Using these three selected features
on the validation set, the classification accuracy was approximately 97% with a
throughput of 40 nuts per second, proving better performance than traditional mechanical
devices on pistachio nuts produced in California.

Pearson's (2001) study using impact acoustics emphasized the importance of the
signal processing stage. In particular, it has been shown that having a priori information
about the relevant time and frequency content of the signals has important effects on
classification accuracy. However, the adjustment of these parameters is demanding.
Furthermore, the difference in size between nuts from region to region results in sound
signals with different characteristics. For instance, pistachio nuts in the Gaziantep region
of Turkey are much smaller than those nuts produced in California. Furthermore, the
open‐shell Gaziantep nuts have an ellipsoid shape and a thin split in the shell, which cause
similar impact acoustics to that of closed shells. Sample images of these nuts are shown
in figure 1. The physical differences make it necessary to develop an adaptive
classification system that can adjust its parameters for a given signal (nut type).

In this article, we tackle these problems by developing an adaptive time‐frequency
plain feature extraction and classification algorithm that utilizes the same impact acoustic
system. Based on the observations from the algorithms mentioned above, our algorithm
does not depend on a priori knowledge of the time‐frequency content of the signals under
examination. Hence, it is more universally adaptable to other types of applications and
uses features extracted from both the time and frequency content of signals, concurrently.
In this respect, the proposed algorithm extracts adaptive time‐frequency features from
impact acoustics by using a dual‐tree undecimated wavelet packet transform. It locates
most discriminant features among classes by a wrapper strategy and classifies them with
linear discriminant analysis (LDA). In particular, we tested our proposed system to
discriminate between open‐ and closed‐shell pistachio nuts collected from the Gaziantep
region of Turkey.
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(a)    (b)

(c)

Figure 1. Sample pistachio images: (a) open‐shell and (b) closed‐shell pistachios from the Gaziantep
region in Turkey, and (c) open and closed shell California pistachios.

This article is organized as follows: in the next section, we describe the data
acquisition system to record the impact acoustic signals. Then we describe our feature
extraction and subset selection procedures. In the Results section, we provide
experimental results on the classification of open‐ and closed‐shell pistachio nuts.
Finally, we discuss our findings and challenges and the future steps of our research.

Materials and Systems
The apparatus used to record sound signals and sort the pistachio nuts is based on the

system developed by Pearson (2001) and shown in figure 2. A nut is fed down a declining
slide, at the end of which it drops onto a steel impact plate. The resulting acoustic signal
from the impact is recorded with a highly directional microphone. The thickness of the
impact plate and the direction of microphone are selected in such a way that the unwanted
noise during the sound signal recordings is minimized. Output of the microphone is
digitized with 100 kHz sampling frequency by a sound card attached to a PC and stored
for further analysis. Each record is aligned according to an anchor time point, which was
obtained by examining the absolute value of the impact acoustics. This point is detected
when the absolute amplitude exceeds a threshold (>1500). In particular, 40 samples
before and 216 samples after the anchor point were used. The sound signals available this
way are analyzed in an off‐line manner for feature extraction. After features are selected
and the decision rules are set, the system is run for validation. In real‐time implemen-
tation, a decision is given and either the nut is diverted by an air valve to one stream or
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Figure 2. Impact sound classification system (modified from Pearson, 2001).

no action is taken and the nut continues in the direction of its momentum. Obviously, a
timing constraint is present, and this is one reason to give a good decision as fast as
possible. Although we do not validate the performance of our data in real‐time, these time
constraints have to be taken into consideration for practice.

For each type (closed and open) of pistachio, 200 recordings were obtained using this
setup. Each acoustic recording was 256 samples long. Examples of sound signals are
given in figure 3. We note that 256 sample provide enough time duration to cover the
impact and its tail. After 256 samples, the impact signals vanished out.

The variations between open‐ and closed‐shell pistachio sound signals can be
observed in these time domain signals. However, as will be shown in the Results section,
a method that is based only on time domain signal variations yields lower classification
accuracy than time and frequency domain information; consequently, it is a better
strategy to use information from both the time and frequency domains by a joint
adaptation. To give a flavor of the time and frequency content of the signals, a short‐time
Fourier transform (STFT) is computed for each sound signal. A 256‐point FFT is
computed in 16 sample windows to obtain STFT maps. This window is shifted with

(a) (b)

Figure 3. Sample impact sound signals of (a) an open‐shell pistachio and (b) a closed‐shell pistachio.
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Figure 4. Averaged STFT images of (a) open‐shell and (b) closed‐shell pistachios.

87.5% overlap along the time axis. The absolute values of these STFTs are averaged over
200 signals for each class. Logarithms of these averages for each class are depicted in
figure 4. Not only do we have the time variations but also the frequency variations for
both classes of signals as well.

Feature Extraction
In the last several years, there has been a growing interest in exploring the

time‐frequency plane for classification by using adaptive strategies. The local
discriminant bases (LDB), an algorithm of Saito et al. (2002), has been proposed to
achieve this task. This approach first represents a given signal for each class in a
redundant manner in a single pyramidal tree structure by wavelet packets (WP) or cosine
packets (CP). The pyramidal tree structure is pruned from bottom to top such that the
discrimination power between expansion coefficients in the nodes of the tree is
maximized. Once the tree is pruned, a complete representation of the signal is obtained.
This is followed by sorting the expansion coefficients according to their discrimination
power and inputting them to a classifier for the final decision. This powerful method has
been used in several applications, such as electromyogram and electroencephalogram
classification, and successful results have been obtained (Englehart, 1999; Ince et al.,
2006, Ince et al., 2007). However, the LDB algorithm has many drawbacks. First, the
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WP/CPs, which are used to represent the signal in the nodes of the tree structure, do not
satisfy the shift invariance property. Briefly, a shift in the signal is reflected by
unpredictable changes in the expansion coefficients. This behavior is not appropriate for
pattern recognition applications (Mallat, 2000). Furthermore, since a single tree is used,
this algorithm can only adapt in a single axis, either time or frequency. Several studies
have shown that the adaptation in both axes is crucial (Vetterli, 2001; Ince et al., 2006).
Finally, the pruning and feature sorting stages do not account for the interactions/
relations between different time‐frequency cells. The obtained complete representation
may not be the best subset for the classifier.

Here, as a first step, we use undecimated wavelet packet transform (UDWPT) to
achieve a shift invariant signal representation. Unser (1995) has shown that the
classification results obtained with undecimated wavelet transform (UDWT) is superior
to discrete wavelet transform. We note that in our previous publications we used the term
“wavelet transform” although we expanded the nodes in the high band. Therefore, in
order to prevent confusion, we will use the term UDWPT, which expands the low and
high frequency bands of the decomposition tree as shown in figure 5. Furthermore, we
use a dual tree to adapt both in time and frequency axes. Finally, we use a greedy approach
to select features from the redundant representation. These techniques are explained in
detail in the following sections.
Undecimated Wavelet Packet Transform

The discrete wavelet transform (DWT) and its variants have been extensively used in
1D and 2D signal analysis due to their good localization properties both in time and
frequency domains (Vetterli, 2001). However, the down‐sampling operator at the outputs
of each filter results in a shift variant decomposition. In practice, a shift in the signal is
reflected by abrupt changes in the extracted expansion coefficients or related features.
Unser (1995) proposed using the undecimated wavelet transform to extract subband
energy features, which are shift invariant. This is achieved by removing the
down‐sampling operation. The output at any level of pyramidal filter bank (fig. 6) is
computed by using an appropriate filter, which is derived by up‐sampling the basic filter.

(a)
   

(b)

Figure 5. The wavelet tree (a) and the wavelet packet tree (b). Note that in the wavelet packet tree, the
nodes in the high band are expanded, which is a generalized form of wavelet transform and provides
a richer decomposition. L and H stand for low and high frequency bands.
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Figure 6. Pyramidal undecimated wavelet packet tree. The input x[n] is successively decomposed in
low and high frequency bands.

A filter g(n) with a z‐transform G(z) that satisfies the quadrature mirror filter condition
is used to construct the pyramidal filter bank (fig. 6):

1)()()()( 11 =−−+ −− zGzGzGzG (1)

The high‐pass filter h(n) is obtained by shifting and modulating g(n) (Unser 1995).
Specifically, the z transform of h(n) is chosen as:

)()( 1−−= zzGzH (2)

The subsequent filters in the filter bank are then generated by increasing the width of
h(n) and g(n) at every step, e.g.:

)()( 2
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In the signal domain, the filter generation can be expressed as:

igkgi 21 ][)(
�+ = , ihkhi 21 ][)(

�+ = (4)

where the notation m�[]  denotes the up‐sampling operation by a factor of m. The
subbands computed by UDWPT and the original signal constitute the frequency branch
of the double‐tree undecimated DWT.
Time Segmentation

Now in order to extract temporal information in each subband, as in the frequency
decomposition tree, every subband is segmented into non‐overlapping time segments at
each level with a pyramidal tree structure successively. In each time segment, the sum
of the squares of the samples, energy, is computed as one feature to be used in off‐line
training. The time segmentation explained above forms the second branch of the double
tree. From then on, we keep the index information of the dual tree structure to be used
in the later stage for dimension reduction via pruning.

To summarize this section, refer to the double tree structure in figure 7. This double
tree uses 1‐level in each plane. The vertical middle boxes are the frequency subbands of
UDWPT. Box 1 represents the unfiltered original signal, box 2 represents the low‐pass
filtered signal, and box 3 represents the high‐pass filtered signal. Each of these subbands
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Figure 7. Double tree structure consisting of time and frequency planes.

is segmented in time into three segments as shown. Segment 1 covers the whole subband,
segment 2 covers the first half of it, and segment 3 the second half of it. The parameters
for deciding the number of features are the number of levels for frequency (F) and time
segmentation (T). Let T be the number of levels in time and F be the number levels in
frequency. There will be 2(F+1) ‐ 1 subbands (including the original signal) and 2(T+1) ‐
1 time segments for each subband. This will produce the total number of features NF =
(2(F+1) ‐ 1)(2(T+1) ‐ 1).

Feature Subset Selection
As explained in the previous section, the dual tree has a total number of features NF�=

(2(F+1) ‐ 1)(2(T+1) ‐ 1) for each sound signal, where F is the frequency level and T is the
time level. For a typical value of F = 3 and T = 3, the dual tree produces 225 (NF = 225)
features. Obviously, using a high‐dimensional and correlated feature dictionary for
classification is not an efficient approach. At this point, selection of a subset of features
from this redundant dictionary is critical. Now let us shortly summarize some of the
existing methods such as filtering and wrapper strategies that are widely used for subset
selection in classification (Kohavi and John, 1997; Hall, 1998). The filtering approach
uses a cost measure to select a subset of features and feeds them to the classifier for final
decision. In general, the discrimination power of each individual feature is first estimated
with a cost measure. Then the features are sorted according to their discrimination power
in descending order. As a final step, the top subset is fed to the classifier. Since the subset
is selected without implementing a search procedure, the filtering approaches have very
low computational complexity. The subset selection procedure in the LDB algorithm,
which is obtained by pruning and getting a rank of surviving features, is a filtering
approach as well. Note also that the filtering approach does not evaluate the actual
classification performance of the selected subset of features.

As an alternative strategy, a “wrapper” method is widely used to select a subset of
features by inputting them to a classifier and measuring their combinatorial performance
in classification. This method is very powerful in estimating the combinatorial
performance of a set of features by implementing a search in the entire feature space.
Sequential forward selection, sequential backward elimination, and floating search
methods are some of popular strategies used in subset selection (Pudil et al., 1994).
Typically, a cross‐validation process is implemented on the training set to evaluate the
classification performance of the inspected subset of features in classification. Since each
set is processed by the classifier, the wrapper strategies have high computational
complexity. Another drawback of the wrapper strategies is that they are very susceptible
to overlearning. In a very rich feature dictionary, the wrapper methods can easily find a
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subset and even use noise and/or correlated features, which in actuality do not carry the
real discriminant information. Therefore, while selecting a subset, decorrelating the
feature dictionary can be a crucial step. For this particular purpose, we will utilize the
structure of the feature dictionary to select a subset with both filtering and wrapper
strategies. In particular, we will prune the double‐tree structure to select those nodes that
do not overlap in time and/or frequency. What is meant with overlap is as follows. A
selected node on the dual tree is a parent for the finer levels (for the nodes below it) or
a child for the nodes above it. Therefore, each subspace of a particular node overlaps with
its mother and child spaces. From now on, we will evaluate the efficiency of pruning by
combining it with filtering and wrapper strategies in classification.

Three different types of methods are considered for feature selection (Type I, Type II,
and Type III). The general structure of the algorithm for all three methods is given in
figure 8. The leftmost box is the dictionary of features. LDA on the right is used both for
classification and extracting the relationship among combinations of features. Rather
than using a cross‐validation procedure to asses the efficiency of features, we use a cost
measure. For this reason, the output of the classifier is fed to a cost function to measure
the discrimination power for that combination of features between classes. This measure
will be used to select the best feature combination among other feature combinations. In
this study, the Fisher discrimination (FD) (Duda et al., 2001) criterion:
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and misclassification (MC) rate are used as cost functions to quantify the discrimination
between two classes.
Type I

Type I is a sequential forward feature selection method. All of the features from the
dictionary (from each class) enter the LDA one by one, and corresponding classification
efficiency is measured for each feature using the cost function. After this search is done
over all NF features, the best feature is selected by comparing the cost values of each one.
In the next step, the second best feature, which will do the best in combination with the
first selected one, is searched over the remaining features set one by one. This procedure
is run until the desired number of features is reached. Type I uses all the boxes and
connections in figure 8 except the feedback from the cost function to the dictionary. Since
no dimension reduction is implemented, this approach has high computational
complexity.
Type II

Type II is a modified version of Type I with an additional pruning module for
dimension reduction. As in Type I, a sequential forward selection procedure is

Figure 8. Block diagram of the proposed classification technique.
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implemented. After selection of each feature, we use the feedback path from the cost
function to the dictionary as in figure 8. The index of the selected feature corresponds to
a node on the double tree, which has a frequency tree index and a time tree index in that
subband. In the frequency tree, the nodes (subbands) that overlap with the selected
frequency index are removed. Similarly in the time tree, the nodes that overlap with the
selected time index are removed as well. In this way, only “good” potential features are
kept in the dictionary; hence, the dictionary is pruned based on the last selected feature.
Now the next feature, which will do the best in combination with the first selected one,
is searched on the pruned dictionary. This procedure is run until the desired number of
features is reached. Therefore, the only difference between Type II and Type I is that
pruning is done on the dictionary based on the selected features.
Type III

Type III is the filtering approach with pruning. It does not use the LDA or a feedback
path as in figure 8. Instead of using the classifier feedback, a cost value is computed for
each node on the double tree individually. Then a pruning algorithm, as described by
Saito et al. (2002), is run on the double tree from bottom to top to find the nodes with
maximum discrimination power measured by the FD cost function. Once a node is
selected, all nodes overlapping with the selected one are removed. After pruning the tree,
the resulting feature set is sorted according to the features' corresponding discrimination
power in descending order, and the top subset is input to the classifier. In this way, the
most predictive features are input to the classification system. Since no feedback is used
from the classifier, Type III has lower computational complexity compared to the other
two methods.

The sound signals from each class are analyzed in an off‐line manner for feature
extraction by one of the three methods explained in the preceding sections. After features
are selected and the decision rules are set, the system is run for validation.

Results
We tested the proposed approach on pistachio acoustic signals. We used a 2 times

2‐fold cross‐validation method to estimate the classification performance. Basically, half
of the data set is used for training and the rest for testing. Then the test and training sets
are swapped. This experiment is repeated twice. We use a frequency level F = 3 and time
level T = 3 for the dual tree. After calculating the energy features in the nodes of the dual
tree, they are converted to log scale. The log scale operation approximates the distribution
of features to a Gaussian distribution where this assumption holds in the final
classification step by LDA classifier.

Table 1 shows the classification accuracies obtained with the proposed methods with
the Fisher discrimination (FD) cost measure. The classification error obtained with the
base line algorithm of Pearson (2001) is given as BA. The comparison of all three types
with their minimum errors and the number of features (NF) used to reach them are given.
The Type I and Type II approaches, which use the feedback from the classifier,
outperformed the Type III and BA approaches. As indicated before, the Type III only uses
the same tree pruning method of the original LDB algorithm and does not account for the
interactions between features. The classification accuracies we obtained strongly
indicate that the evaluation of the classification performance of the combined features in
the training stage is important and should be preferred to evaluating the individual
discrimination power of the features. Furthermore, we note that the Type II approach
always used a smaller number of features than the other approaches to achieve the
minimal error.
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Table 1. Open‐shell and closed‐shell pistachio nut minimum classification errors for the proposed
types with FD criterion. NF stands for the number of features used to reach minimum error.

Type Error (%) NF

Type I 8.25 17
Type II 8.25 8
Type III 11.5 31

BA 18 3
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Figure 9. Classification error curves for (a) all three types obtained with FD criterion, and (b) effect
of cost functions (FD, MC) in classification for Type II.

The classification error curves versus the number of features for the results in table 1
are given in figure 9a. Since each selected feature index is used to prune the dual tree
structure, the decorrelation of the redundant feature dictionary helps the Type II classifier
to use a small number of features to achieve minimal error rate. Although the obtained
classification accuracies of Type I and Type II are same, the number of features used
carries significant importance for real‐time applications. Since Type II uses a small
number of features, it has lower computational complexity. It can be realized with a
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Table 2. Effect of cost functions (FD and MC) for Type II.

Cost Function Error (%) NF

FD 8.25 8
MC 11.25 12

low‐cost embedded system with a high throughput rate. Furthermore, using a small
number of features can be a great advantage in generalization during classification.

To see the effects of the cost functions on the classification accuracy the results for
Type II with the FD and MC criteria are given in table 2. We note that the FD criterion
was superior to the MC cost. Interestingly, not only was the classification accuracy
decreased, but also the number of features used to achieve minimum error was lower for
the FD case. We believe that the evaluation of discrimination power with a measure that
takes real values provides more accurate quantification of separability, as in the case of
FD. On the other hand, for MC cost, the effectiveness of the combination of features is
quantified with a discrete scale, indicating if a feature vector belongs to class A or B. We
think that with MC cost, the classifier has more bias in overlearning, which is also
indicated in figure 9b. For the FD case, the classifier tries to improve the distance between
the class means and reduce their standard deviation, which is more effective.

In order to make an additional connection to the time‐frequency images of each class
given in figure 4, we prepared a time‐frequency map of the first eight features of Type�II.
It reached the minimal error with this set. Selected features correspond to non‐
overlapping nodes on the dual tree selected by the wrapper strategy. These features may
come from the same frequency level but different time segments or from the same time
interval but different frequency subbands. The intensity of each segment on the map is
related with that feature's individual discriminative power measured by the FD cost
function. The resulting map is shown in figure 10. The most discriminant feature is
selected from the tail of the impact. We note that the open shells produce an impact
acoustic with a larger tail than closed shells.

Figure 10. Discriminant time‐frequency map of the first eight features of Type II. The darker regions
have more discrimination power.
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Conclusion
In this article, we described a new adaptive time‐frequency plane feature extraction

and classification algorithm to discriminate between open‐ and closed‐shell pistachio
nuts using their impact acoustics. The algorithm selects most discriminant features from
a redundant structural dictionary by using a classifier feedback and a pruning procedure.
In particular, the classification system uses the Fisher discrimination criterion or
miss‐classification cost to measure the effectiveness of the combination of features. The
selected feature subset is fed to a linear discriminant analysis for final decision. We
applied the algorithm to particular pistachio nuts from the Gaziantep region in Turkey,
which are more difficult to classify than those from California. The best classification
accuracy was 91.7%. This accuracy was obtained using only eight time‐frequency
features that are selected with the combination of dictionary pruning and classifier
feedback with the Fisher criterion. When the pruning stage was removed, the same
classification accuracy was obtained with 17 features, which will increase the
computational complexity in real‐time implementation. When the classifier feedback
was removed, the system achieved a classification accuracy of 88.5%. This indicates that
the evaluation of the combination of features by using a classifier feedback and a pruning
procedure provides better results than evaluating individual discrimination power of the
candidate features. In addition to different feature selection procedures, we also
compared the effectiveness of the cost function at the end of the classifier. We observed
that when the Fisher criterion is replaced with misclassification cost, the best results we
obtained dropped to 88.7%.

A previously implemented algorithm, which uses maximum signal amplitude,
absolute integration, and gradient features, achieved 82% classification accuracy on the
same data set. The results we obtained show that our algorithm is superior to previous
algorithms applied in this area. Our proposed algorithm does not depend on a priori
knowledge of the time‐frequency content of the signals under examination. Furthermore,
its adaptation capability to both the time and frequency content of signals, concurrently,
makes the algorithm a universal method for food kernel inspection, one that can resist the
variability between nuts from region to region with respect to size and weight. One of the
critical aspects to consider is the environmental noise that can disturb the impact signal.
In real‐life conditions, a mechanical device and several other sorting machines are
expected to be running in the factory. In this case, the acoustic disturbances originating
from other sorting machines and mechanical components may interfere with the impact
acoustic recordings. Currently, we are exploring other impact signals, such as vibration,
that may be more robust against interference from neighboring sorters than an acoustic
signal.
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