Hartree-Fock approximation of bipolaron state in quantum dots and wires
dc.citation.epage | 529 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 525 | en_US |
dc.citation.volumeNumber | 78 | en_US |
dc.contributor.author | Senger, R. T. | en_US |
dc.contributor.author | Kozal, B. | en_US |
dc.contributor.author | Chatterjee, A. | en_US |
dc.contributor.author | Erçelebi, A. | en_US |
dc.date.accessioned | 2016-02-08T09:55:26Z | |
dc.date.available | 2016-02-08T09:55:26Z | |
dc.date.issued | 2010 | en_US |
dc.department | Department of Physics | en_US |
dc.description.abstract | The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational wave function that can conveniently conform to represent alternative ground state configurations of the two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby interacting polarons confined by the external potential. In the bipolaron state the electrons are found to be separated by a finite distance about a polaron size. We present the formation and stability criteria of bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the quantum wire geometry aggravates the formation of stable bipolarons. | en_US |
dc.identifier.doi | 10.1140/epjb/e2010-10517-x | en_US |
dc.identifier.issn | 1434-6028 | |
dc.identifier.uri | http://hdl.handle.net/11693/22091 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | https://doi.org/10.1140/epjb/e2010-10517-x | en_US |
dc.source.title | European Physical Journal B | en_US |
dc.subject | Bipolaron state | en_US |
dc.subject | Bipolaronic phase | en_US |
dc.subject | Bipolarons | en_US |
dc.subject | Bound state | en_US |
dc.subject | Domain of stability | en_US |
dc.subject | Electron phonon couplings | en_US |
dc.subject | External potential | en_US |
dc.subject | Finite distance | en_US |
dc.subject | Ground state configuration | en_US |
dc.subject | Hartree-Fock approximations | en_US |
dc.subject | Quantum Dot | en_US |
dc.subject | Quantum-dot confinements | en_US |
dc.subject | Spherical quantum dot | en_US |
dc.subject | Electrons | en_US |
dc.subject | Ground state | en_US |
dc.subject | Hartree approximation | en_US |
dc.subject | Nanowires | en_US |
dc.subject | Optical waveguides | en_US |
dc.subject | Phonons | en_US |
dc.subject | Polarons | en_US |
dc.subject | Semiconductor quantum dots | en_US |
dc.subject | Semiconductor quantum wires | en_US |
dc.subject | Wave functions | en_US |
dc.subject | Wire | en_US |
dc.subject | Stability criteria | en_US |
dc.title | Hartree-Fock approximation of bipolaron state in quantum dots and wires | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hartree-Fock approximation of bipolaron state in quantum dots and wires.pdf
- Size:
- 170.97 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version