Covariance matrix-based fire and flame detection method in video
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 1113 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 1103 | en_US |
dc.citation.volumeNumber | 23 | en_US |
dc.contributor.author | Habiboğlu, Y. H. | en_US |
dc.contributor.author | Günay, O. | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.date.accessioned | 2016-02-08T09:44:06Z | |
dc.date.available | 2016-02-08T09:44:06Z | |
dc.date.issued | 2011-09-17 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | This paper proposes a video-based fire detection system which uses color, spatial and temporal information. The system divides the video into spatio-temporal blocks and uses covariance-based features extracted from these blocks to detect fire. Feature vectors take advantage of both the spatial and the temporal characteristics of flame-colored regions. The extracted features are trained and tested using a support vector machine (SVM) classifier. The system does not use a background subtraction method to segment moving regions and can be used, to some extent, with non-stationary cameras. The computationally efficient method can process 320×240 video frames at around 20 frames per second in an ordinary PC with a dual core 2.2 GHz processor. In addition, it is shown to outperform a previous method in terms of detection performance. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:44:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012 | en |
dc.identifier.doi | 10.1007/s00138-011-0369-1 | en_US |
dc.identifier.issn | 0932-8092 | |
dc.identifier.uri | http://hdl.handle.net/11693/21275 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00138-011-0369-1 | en_US |
dc.source.title | Machine Vision and Applications | en_US |
dc.subject | Covariance descriptors | en_US |
dc.subject | Fire detection | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Background subtraction method | en_US |
dc.subject | Computationally efficient | en_US |
dc.subject | Descriptors | en_US |
dc.subject | Detection performance | en_US |
dc.subject | Dual core | en_US |
dc.subject | Feature vectors | en_US |
dc.subject | Fire detection | en_US |
dc.subject | Fire detection systems | en_US |
dc.subject | Flame detection | en_US |
dc.subject | Frames per seconds | en_US |
dc.subject | Moving regions | en_US |
dc.subject | Nonstationary | en_US |
dc.subject | Spatio-temporal | en_US |
dc.subject | Temporal characteristics | en_US |
dc.subject | Temporal information | en_US |
dc.subject | Video frame | en_US |
dc.subject | Covariance matrix | en_US |
dc.subject | Fire detectors | en_US |
dc.subject | Support vector machines | en_US |
dc.title | Covariance matrix-based fire and flame detection method in video | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Covariance matrix-based fire and flame detection method in video.pdf
- Size:
- 1.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version