Closely embedded Krein spaces and applications to Dirac operators
dc.citation.epage | 550 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 540 | en_US |
dc.citation.volumeNumber | 376 | en_US |
dc.contributor.author | Cojuhari, P. | en_US |
dc.contributor.author | Gheondea, A. | en_US |
dc.date.accessioned | 2015-07-28T11:59:54Z | |
dc.date.available | 2015-07-28T11:59:54Z | |
dc.date.issued | 2011-04-15 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Motivated by energy space representation of Dirac operators, in the sense of K. Friedrichs, we recently introduced the notion of closely embedded Krein spaces. These spaces are associated to unbounded selfadjoint operators that play the role of kernel operators, in the sense of L Schwartz, and they are special representations of induced Krein spaces. In this article we present a canonical representation of closely embedded Krein spaces in terms of a generalization of the notion of operator range and obtain a characterization of uniqueness. When applied to Dirac operators, the results differ according to a mass or a massless particle in a dramatic way: in the case of a particle with a nontrivial mass we obtain a dual of a Sobolev type space and we have uniqueness, while in the case of a massless particle we obtain a dual of a homogenous Sobolev type space and we lose uniqueness. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T11:59:54Z (GMT). No. of bitstreams: 1 10.1016-j.jmaa.2010.10.059.pdf: 210215 bytes, checksum: 7cf4fa36f5b4c81a325f4cd7ed7084f1 (MD5) | en |
dc.identifier.doi | 10.1016/j.jmaa.2010.10.059 | en_US |
dc.identifier.eissn | 1096-0813 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | http://hdl.handle.net/11693/12068 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jmaa.2010.10.059 | en_US |
dc.source.title | Journal of Mathematical Analysis and Applications | en_US |
dc.subject | Kre˘ın space | en_US |
dc.subject | Operator range | en_US |
dc.subject | Closed embedding | en_US |
dc.subject | Kernel operator | en_US |
dc.subject | Homogenous Sobolev space | en_US |
dc.subject | Dirac operator | en_US |
dc.title | Closely embedded Krein spaces and applications to Dirac operators | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1016-j.jmaa.2010.10.059.pdf
- Size:
- 205.29 KB
- Format:
- Adobe Portable Document Format