Closely embedded Krein spaces and applications to Dirac operators
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Motivated by energy space representation of Dirac operators, in the sense of K. Friedrichs, we recently introduced the notion of closely embedded Krein spaces. These spaces are associated to unbounded selfadjoint operators that play the role of kernel operators, in the sense of L Schwartz, and they are special representations of induced Krein spaces. In this article we present a canonical representation of closely embedded Krein spaces in terms of a generalization of the notion of operator range and obtain a characterization of uniqueness. When applied to Dirac operators, the results differ according to a mass or a massless particle in a dramatic way: in the case of a particle with a nontrivial mass we obtain a dual of a Sobolev type space and we have uniqueness, while in the case of a massless particle we obtain a dual of a homogenous Sobolev type space and we lose uniqueness. (C) 2010 Elsevier Inc. All rights reserved.