Fabrication of NiCu interconnected porous nanostructures for highly selective methanol oxidation coupled with hydrogen evolution reaction

buir.contributor.authorDuran, Hatice
buir.contributor.orcidDuran, Hatice|0000-0001-6203-3906
dc.citation.epage36128en_US
dc.citation.issueNumber85en_US
dc.citation.spage36118en_US
dc.citation.volumeNumber47en_US
dc.contributor.authorArshad, F.
dc.contributor.authorTahir, A.
dc.contributor.authorHaq, T.
dc.contributor.authorDuran, Hatice
dc.contributor.authorHussain, I.
dc.contributor.authorSher, F.
dc.date.accessioned2023-02-24T12:51:03Z
dc.date.available2023-02-24T12:51:03Z
dc.date.issued2022-01-15
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractElectrocatalytic water electrolysis is the most promising clean and efficient process for pure and clean generation of hydrogen. However, water oxidation reaction requires a large overpotential owing to its slow kinetics, causing a lower efficiency of hydrogen production and high energy consumption. Herein, we report the bimetallic NiCu interconnected porous nanostructures on copper foil (NiCu@Cu) prepared by hydrogen bubbles templating electrodeposition technique for methanol oxidation reaction (MOR), which replaces the kinetically sluggish water oxidation reaction and enhances the hydrogen production with lower energy input. With their high macroporosity, interconnected growth on copper foil with excellent conductivity and easy flow of electrolyte on electrode interface, and stabilization of active sites due to bimetallic synergistic effects, the NiCu@Cu electrocatalysts exhibit outstanding activities for HER and MOR. The NiCu@Cu requiring just 1.32 V anodic potential vs RHE at 10 mA cm−2 for MOR which is significantly lower than that for water oxidation reaction. Moreover, the electrolyzer using NiCu@Cu/NiCu@Cu for anodic MOR and cathodic H2 production only needs a low input voltage of 1.45 V to deliver a current density of 10 mA cm−2 with impressive durability.en_US
dc.description.provenanceSubmitted by Bilge Kat (bilgekat@bilkent.edu.tr) on 2023-02-24T12:51:03Z No. of bitstreams: 1 Fabrication_of_NiCu_interconnected_porous_nanostructures_for_highly_selective_methanol_oxidation_coupled_with_hydrogen_evolution_reaction.pdf: 3564519 bytes, checksum: 5833d057c308a8551e8f166b4e06a95b (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-24T12:51:03Z (GMT). No. of bitstreams: 1 Fabrication_of_NiCu_interconnected_porous_nanostructures_for_highly_selective_methanol_oxidation_coupled_with_hydrogen_evolution_reaction.pdf: 3564519 bytes, checksum: 5833d057c308a8551e8f166b4e06a95b (MD5) Previous issue date: 2022-01-15en
dc.identifier.doi10.1016/j.ijhydene.2022.08.187en_US
dc.identifier.eissn1879-3487
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11693/111689
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.ijhydene.2022.08.187en_US
dc.source.titleInternational Journal of Hydrogen Energyen_US
dc.subjectBubble templating electrodepositionen_US
dc.subjectEnergy-saving hydrogen productionen_US
dc.subjectMethanol-assisted hydrogen productionen_US
dc.subjectNiCu porous Interconnected networken_US
dc.subjectSelective methanol oxidation reactionen_US
dc.titleFabrication of NiCu interconnected porous nanostructures for highly selective methanol oxidation coupled with hydrogen evolution reactionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fabrication_of_NiCu_interconnected_porous_nanostructures_for_highly_selective_methanol_oxidation_coupled_with_hydrogen_evolution_reaction.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: